{"title":"Acoustic source detection and localization using generalized likelihood ratio test in the spherical harmonic domain","authors":"Dhiya Eddine Rabia Oulahcine , Mustapha Benssalah , Nabil Haddad , Daniele Salvati , Osama Mahfoudia","doi":"10.1016/j.apacoust.2024.110434","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, spherical microphone arrays have gained significant attention for analyzing acoustic signals due to their consistent spatial resolution in both elevation and azimuth, added to the ability to transform signals into the spherical harmonics domain. This paper deals with the localization of active sound sources in the presence of noisy and silent recordings. In the literature, the aspects of detection and localization of acoustic signals are often addressed separately. However, the present paper proposes the spherical harmonic generalized likelihood ratio test (SH-GLRT) algorithm which concurrently addresses both aspects while maintaining a fixed false-alarm probability (Pfa). In this context, the acoustic source localization is considered as a detection problem, and the necessary mathematical development is provided. Precisely, the resulting detection thresholds for four spherical harmonics orders are considered, and the detection performance is assessed and compared to the state-of-the-art methods. In addition, the LOCATA challenge dataset is employed for validation, which emphasizes the efficiency of the proposed method.</div></div>","PeriodicalId":55506,"journal":{"name":"Applied Acoustics","volume":"231 ","pages":"Article 110434"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Acoustics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003682X24005851","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, spherical microphone arrays have gained significant attention for analyzing acoustic signals due to their consistent spatial resolution in both elevation and azimuth, added to the ability to transform signals into the spherical harmonics domain. This paper deals with the localization of active sound sources in the presence of noisy and silent recordings. In the literature, the aspects of detection and localization of acoustic signals are often addressed separately. However, the present paper proposes the spherical harmonic generalized likelihood ratio test (SH-GLRT) algorithm which concurrently addresses both aspects while maintaining a fixed false-alarm probability (Pfa). In this context, the acoustic source localization is considered as a detection problem, and the necessary mathematical development is provided. Precisely, the resulting detection thresholds for four spherical harmonics orders are considered, and the detection performance is assessed and compared to the state-of-the-art methods. In addition, the LOCATA challenge dataset is employed for validation, which emphasizes the efficiency of the proposed method.
期刊介绍:
Since its launch in 1968, Applied Acoustics has been publishing high quality research papers providing state-of-the-art coverage of research findings for engineers and scientists involved in applications of acoustics in the widest sense.
Applied Acoustics looks not only at recent developments in the understanding of acoustics but also at ways of exploiting that understanding. The Journal aims to encourage the exchange of practical experience through publication and in so doing creates a fund of technological information that can be used for solving related problems. The presentation of information in graphical or tabular form is especially encouraged. If a report of a mathematical development is a necessary part of a paper it is important to ensure that it is there only as an integral part of a practical solution to a problem and is supported by data. Applied Acoustics encourages the exchange of practical experience in the following ways: • Complete Papers • Short Technical Notes • Review Articles; and thereby provides a wealth of technological information that can be used to solve related problems.
Manuscripts that address all fields of applications of acoustics ranging from medicine and NDT to the environment and buildings are welcome.