Advances and challenges in hybrid photovoltaic-thermoelectric systems for renewable energy

IF 10.1 1区 工程技术 Q1 ENERGY & FUELS
Raza Moshwan , Xiao-Lei Shi , Min Zhang , Yicheng Yue , Wei-Di Liu , Meng Li , Lijun Wang , Daniel Liang , Zhi-Gang Chen
{"title":"Advances and challenges in hybrid photovoltaic-thermoelectric systems for renewable energy","authors":"Raza Moshwan ,&nbsp;Xiao-Lei Shi ,&nbsp;Min Zhang ,&nbsp;Yicheng Yue ,&nbsp;Wei-Di Liu ,&nbsp;Meng Li ,&nbsp;Lijun Wang ,&nbsp;Daniel Liang ,&nbsp;Zhi-Gang Chen","doi":"10.1016/j.apenergy.2024.125032","DOIUrl":null,"url":null,"abstract":"<div><div>Integrating thermoelectric generators (TEGs) with photovoltaic (PV) devices presents an effective strategy to enhance the power generation of PV cells, thus substantially contributing to the widespread adoption of solar energy. By harnessing both photon and heat energy from sunlight, this integration maximizes energy capture and improves overall system efficiency, thereby advancing the feasibility and scalability of solar energy generation. This article provides a timely review of the advances and challenges in hybrid photovoltaic-thermoelectric generator (PV-TEG) technology, covering fundamentals, the impact of thermal, contact, and load resistance on performance, various integration options (such as hybrid PV-TEG systems with spectral splitters, phase change materials, and thermal systems), thermal management, feasibility, economic and environmental aspects, and long-term efficiency improvements. Following a detailed analysis and review of extensive progress, PV-TEG systems demonstrate higher efficiency across diverse environmental conditions compared to standalone PV devices. Finally, we address constraints, propose potential remedies, and point out future directions in the field.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"380 ","pages":"Article 125032"},"PeriodicalIF":10.1000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261924024164","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Integrating thermoelectric generators (TEGs) with photovoltaic (PV) devices presents an effective strategy to enhance the power generation of PV cells, thus substantially contributing to the widespread adoption of solar energy. By harnessing both photon and heat energy from sunlight, this integration maximizes energy capture and improves overall system efficiency, thereby advancing the feasibility and scalability of solar energy generation. This article provides a timely review of the advances and challenges in hybrid photovoltaic-thermoelectric generator (PV-TEG) technology, covering fundamentals, the impact of thermal, contact, and load resistance on performance, various integration options (such as hybrid PV-TEG systems with spectral splitters, phase change materials, and thermal systems), thermal management, feasibility, economic and environmental aspects, and long-term efficiency improvements. Following a detailed analysis and review of extensive progress, PV-TEG systems demonstrate higher efficiency across diverse environmental conditions compared to standalone PV devices. Finally, we address constraints, propose potential remedies, and point out future directions in the field.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Energy
Applied Energy 工程技术-工程:化工
CiteScore
21.20
自引率
10.70%
发文量
1830
审稿时长
41 days
期刊介绍: Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信