Bivariate homogeneous functions of two parameters: Monotonicity, convexity, comparisons, and functional inequalities

IF 1.2 3区 数学 Q1 MATHEMATICS
Zhen-Hang Yang , Feng Qi
{"title":"Bivariate homogeneous functions of two parameters: Monotonicity, convexity, comparisons, and functional inequalities","authors":"Zhen-Hang Yang ,&nbsp;Feng Qi","doi":"10.1016/j.jmaa.2024.129091","DOIUrl":null,"url":null,"abstract":"<div><div>The bivariate homogeneous functions of two parameters are also called the bivariate means of two parameters. In the paper, the authors survey some results published since 2005 about monotonicity, logarithmic convexity, and Schur convexity of the bivariate homogeneous functions of two parameters, review the Minkowski, Hölder, Chebyshev, and Hermite–Hadamard type inequalities for the bivariate homogeneous functions of two parameters, and exhibit comparisons of the bivariate homogeneous functions of two parameters. Applying these results, the authors derive and remark some nice inequalities for the bivariate homogeneous functions of two parameters.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"544 2","pages":"Article 129091"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24010138","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The bivariate homogeneous functions of two parameters are also called the bivariate means of two parameters. In the paper, the authors survey some results published since 2005 about monotonicity, logarithmic convexity, and Schur convexity of the bivariate homogeneous functions of two parameters, review the Minkowski, Hölder, Chebyshev, and Hermite–Hadamard type inequalities for the bivariate homogeneous functions of two parameters, and exhibit comparisons of the bivariate homogeneous functions of two parameters. Applying these results, the authors derive and remark some nice inequalities for the bivariate homogeneous functions of two parameters.
二元齐次函数的两个参数:单调性,凸性,比较,和功能不等式
双参数的二元齐次函数也称为双参数的二元均值。本文综述了2005年以来关于双参数二元齐次函数的单调性、对数凸性和Schur凸性的一些研究成果,评述了双参数二元齐次函数的Minkowski、Hölder、Chebyshev和Hermite-Hadamard型不等式,并对双参数二元齐次函数进行了比较。应用这些结果,作者给出了双参数二元齐次函数的一些很好的不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信