Rheya Rajeev , Naser Ansaribaranghar , Andrés Ramírez Aguilera , Florea Marica , Laura Romero de Zerón , Bruce J. Balcom
{"title":"Changing the resonant nucleus by altering the static field, compensation of γ and B0 effects in T2 and T2* measurements of porous media","authors":"Rheya Rajeev , Naser Ansaribaranghar , Andrés Ramírez Aguilera , Florea Marica , Laura Romero de Zerón , Bruce J. Balcom","doi":"10.1016/j.jmr.2024.107811","DOIUrl":null,"url":null,"abstract":"<div><div>Multinuclear <sup>1</sup>H, <sup>13</sup>C, and <sup>23</sup>Na magnetic resonance (MR) has many advantages for studying porous media systems containing hydrocarbons and brine. In recent work, we have explored changing the nucleus measured, keeping the Larmor frequency constant, by changing the static magnetic field B<sub>0</sub>. Increasing the static B<sub>0</sub> field distorts the field in the pore space due to susceptibility mismatch between the matrix and pore fluid. Distortion of the magnetic field in the pore space scales with the applied static field. The gradients that result from the spatial variation of the distorted field will also scale with B<sub>0</sub>. The equations that describe the inhomogeneous broadening in T<sub>2</sub>* show that the MR result depends on <span><math><mrow><mi>γ</mi></mrow></math></span>B<sub>0</sub>. The diffusion through internal field gradients effect on T<sub>2</sub> depends on the product of <span><math><mrow><mi>γ</mi></mrow></math></span> and G, with G depending on B<sub>0</sub>.</div><div>Increasing the static field to bring a nucleus with lower <span><math><mrow><mi>γ</mi></mrow></math></span> into resonance at the same frequency will result in the products <span><math><mrow><mi>γ</mi></mrow></math></span>B<sub>0</sub> and <span><math><mrow><mi>γ</mi></mrow></math></span>G being constant, and therefore, inhomogeneous broadening and diffusion attenuation effects in porous media are predicted to be constant. We explore the T<sub>2</sub>* hypothesis with <sup>23</sup>Na and <sup>1</sup>H measurements of brine in porous reservoir core plugs. We explore the diffusion through internal field gradients effect hypothesis with <sup>1</sup>H and <sup>13</sup>C measurements of decane saturated glass beads.</div><div>The nuclei chosen for study: <sup>1</sup>H, <sup>13</sup>C, and <sup>23</sup>Na are the three most important nuclei for studies of fluids (brine and hydrocarbons) in reservoir core plugs. These three nuclei have a common resonance frequency of 33.7 MHz at static fields of 0.79 T, 3.19 T, and 2.99 T, respectively. All three fields are readily achieved with our variable field superconducting magnet.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"369 ","pages":"Article 107811"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090780724001952","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Multinuclear 1H, 13C, and 23Na magnetic resonance (MR) has many advantages for studying porous media systems containing hydrocarbons and brine. In recent work, we have explored changing the nucleus measured, keeping the Larmor frequency constant, by changing the static magnetic field B0. Increasing the static B0 field distorts the field in the pore space due to susceptibility mismatch between the matrix and pore fluid. Distortion of the magnetic field in the pore space scales with the applied static field. The gradients that result from the spatial variation of the distorted field will also scale with B0. The equations that describe the inhomogeneous broadening in T2* show that the MR result depends on B0. The diffusion through internal field gradients effect on T2 depends on the product of and G, with G depending on B0.
Increasing the static field to bring a nucleus with lower into resonance at the same frequency will result in the products B0 and G being constant, and therefore, inhomogeneous broadening and diffusion attenuation effects in porous media are predicted to be constant. We explore the T2* hypothesis with 23Na and 1H measurements of brine in porous reservoir core plugs. We explore the diffusion through internal field gradients effect hypothesis with 1H and 13C measurements of decane saturated glass beads.
The nuclei chosen for study: 1H, 13C, and 23Na are the three most important nuclei for studies of fluids (brine and hydrocarbons) in reservoir core plugs. These three nuclei have a common resonance frequency of 33.7 MHz at static fields of 0.79 T, 3.19 T, and 2.99 T, respectively. All three fields are readily achieved with our variable field superconducting magnet.
期刊介绍:
The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.