Yang Liu , Xuemei Li , Rui Guo , Zicheng Li , Jiaying Du , Meng Liu , Qingming Hu , Xiangxia Kong , Li Bao
{"title":"Effect of mechanical vibration on microstructure and impact properties of gas metal arc welding Q450NQR1 welded joints","authors":"Yang Liu , Xuemei Li , Rui Guo , Zicheng Li , Jiaying Du , Meng Liu , Qingming Hu , Xiangxia Kong , Li Bao","doi":"10.1016/j.ijpvp.2024.105371","DOIUrl":null,"url":null,"abstract":"<div><div>This article was focused on studying the influence of microstructure and impact performance of Q450NQR1 weathering steel welded joints using low-frequency mechanical vibrations during the welding process (GMAW). The analysis of the molten pool cooling and solidification process in vibration welding is conducted using a one-dimensional Stefan problem and the wave equation coupled model The computational results show that the molten pool cooling time decreases and the stress on the dendrites increases during the crystallization process as vibration frequency increase. Mechanical vibrations with a fixed amplitude of 0.1 mm and frequencies of 0, 20, 40, and 60 Hz were applied to the welding molten pool under the same welding parameters. The microstructure of the weld joints was examined using metallurgical microscope. Charpy impact test was used to measure the impact properties. The results show that the increase in weld zone width is accompanied by a reduction in the heat-affected zone width after the application of mechanical vibrations. The primary proeutectoid ferrite dendrites undergo fragmentation. The acicular ferrite content has increased and structural refinement. The impact energy in the weld zone increases with the increase in vibration frequency. The welded joints exhibit enhanced toughness, with an increased proportion of the fibrous region (F) and the shear lip region (S) at the fracture surface. The distance between the crack instability position and the root of the notch increases.</div></div>","PeriodicalId":54946,"journal":{"name":"International Journal of Pressure Vessels and Piping","volume":"213 ","pages":"Article 105371"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pressure Vessels and Piping","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308016124002497","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This article was focused on studying the influence of microstructure and impact performance of Q450NQR1 weathering steel welded joints using low-frequency mechanical vibrations during the welding process (GMAW). The analysis of the molten pool cooling and solidification process in vibration welding is conducted using a one-dimensional Stefan problem and the wave equation coupled model The computational results show that the molten pool cooling time decreases and the stress on the dendrites increases during the crystallization process as vibration frequency increase. Mechanical vibrations with a fixed amplitude of 0.1 mm and frequencies of 0, 20, 40, and 60 Hz were applied to the welding molten pool under the same welding parameters. The microstructure of the weld joints was examined using metallurgical microscope. Charpy impact test was used to measure the impact properties. The results show that the increase in weld zone width is accompanied by a reduction in the heat-affected zone width after the application of mechanical vibrations. The primary proeutectoid ferrite dendrites undergo fragmentation. The acicular ferrite content has increased and structural refinement. The impact energy in the weld zone increases with the increase in vibration frequency. The welded joints exhibit enhanced toughness, with an increased proportion of the fibrous region (F) and the shear lip region (S) at the fracture surface. The distance between the crack instability position and the root of the notch increases.
期刊介绍:
Pressure vessel engineering technology is of importance in many branches of industry. This journal publishes the latest research results and related information on all its associated aspects, with particular emphasis on the structural integrity assessment, maintenance and life extension of pressurised process engineering plants.
The anticipated coverage of the International Journal of Pressure Vessels and Piping ranges from simple mass-produced pressure vessels to large custom-built vessels and tanks. Pressure vessels technology is a developing field, and contributions on the following topics will therefore be welcome:
• Pressure vessel engineering
• Structural integrity assessment
• Design methods
• Codes and standards
• Fabrication and welding
• Materials properties requirements
• Inspection and quality management
• Maintenance and life extension
• Ageing and environmental effects
• Life management
Of particular importance are papers covering aspects of significant practical application which could lead to major improvements in economy, reliability and useful life. While most accepted papers represent the results of original applied research, critical reviews of topical interest by world-leading experts will also appear from time to time.
International Journal of Pressure Vessels and Piping is indispensable reading for engineering professionals involved in the energy, petrochemicals, process plant, transport, aerospace and related industries; for manufacturers of pressure vessels and ancillary equipment; and for academics pursuing research in these areas.