Enhanced piezoelectric response of Na0.5Bi0.5TiO3-BaTiO3 lead free ceramics by tuning the local polar heterogeneity

IF 5.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Pan Chen , Bin Yuan , Jiachen Wang , Xin Zhang , Yaoguang Chen , Fengjiao Cao , Haojie Zhao , Yanquan Wang , Xiaohui Yuan , Zhongming Hu , Haojie Lian , Feng Zhu , Pei Li , Leilei Chen
{"title":"Enhanced piezoelectric response of Na0.5Bi0.5TiO3-BaTiO3 lead free ceramics by tuning the local polar heterogeneity","authors":"Pan Chen ,&nbsp;Bin Yuan ,&nbsp;Jiachen Wang ,&nbsp;Xin Zhang ,&nbsp;Yaoguang Chen ,&nbsp;Fengjiao Cao ,&nbsp;Haojie Zhao ,&nbsp;Yanquan Wang ,&nbsp;Xiaohui Yuan ,&nbsp;Zhongming Hu ,&nbsp;Haojie Lian ,&nbsp;Feng Zhu ,&nbsp;Pei Li ,&nbsp;Leilei Chen","doi":"10.1016/j.materresbull.2024.113231","DOIUrl":null,"url":null,"abstract":"<div><div>For (1-<em>x</em>)Na<sub>0.5</sub>Bi<sub>0.5</sub>TiO<sub>3</sub>-<em>x</em>BaTiO<sub>3</sub> (NBT-BT) ceramics, the highest piezoelectric performances appears at morphotropic phase boundary (<em>x</em>=0.06∼0.10). Recently, quenching has been as an effective way to improve their piezoelectric performances. In this work, comparative study on normally cooled and quenched NBT-BT ceramics was conducted. We found, there is a close positive correlation between electrical properties and local polar heterogeneity. It was verified in a case study on NBBT6 ceramics by tuning the local polar heterogeneity using Bi or Sr nonstoichiometric modification. And the highest d<sub>33</sub> ∼ 207 pC/N is obtained in Bi-modified NBT-BT ceramics. It demonstrates that, to obtain a higher d<sub>33</sub>, the factors affecting local polar heterogeneity of piezoelectric ceramics could be preferentially considered.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"184 ","pages":"Article 113231"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540824005609","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

For (1-x)Na0.5Bi0.5TiO3-xBaTiO3 (NBT-BT) ceramics, the highest piezoelectric performances appears at morphotropic phase boundary (x=0.06∼0.10). Recently, quenching has been as an effective way to improve their piezoelectric performances. In this work, comparative study on normally cooled and quenched NBT-BT ceramics was conducted. We found, there is a close positive correlation between electrical properties and local polar heterogeneity. It was verified in a case study on NBBT6 ceramics by tuning the local polar heterogeneity using Bi or Sr nonstoichiometric modification. And the highest d33 ∼ 207 pC/N is obtained in Bi-modified NBT-BT ceramics. It demonstrates that, to obtain a higher d33, the factors affecting local polar heterogeneity of piezoelectric ceramics could be preferentially considered.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Research Bulletin
Materials Research Bulletin 工程技术-材料科学:综合
CiteScore
9.80
自引率
5.60%
发文量
372
审稿时长
42 days
期刊介绍: Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信