{"title":"Group projected subspace pursuit for block sparse signal reconstruction: Convergence analysis and applications 1","authors":"Roy Y. He , Haixia Liu , Hao Liu","doi":"10.1016/j.acha.2024.101726","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we present a convergence analysis of the Group Projected Subspace Pursuit (GPSP) algorithm proposed by He et al. <span><span>[26]</span></span> (Group Projected subspace pursuit for IDENTification of variable coefficient differential equations (GP-IDENT), <em>Journal of Computational Physics</em>, 494, 112526) and extend its application to general tasks of block sparse signal recovery. Given an observation <strong>y</strong> and sampling matrix <strong>A</strong>, we focus on minimizing the approximation error <span><math><msubsup><mrow><mo>‖</mo><mi>A</mi><mi>c</mi><mo>−</mo><mi>y</mi><mo>‖</mo></mrow><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> with respect to the signal <strong>c</strong> with block sparsity constraints. We prove that when the sampling matrix <strong>A</strong> satisfies the Block Restricted Isometry Property (BRIP) with a sufficiently small Block Restricted Isometry Constant (BRIC), GPSP exactly recovers the true block sparse signals. When the observations are noisy, this convergence property of GPSP remains valid if the magnitude of the true signal is sufficiently large. GPSP selects the features by subspace projection criterion (SPC) for candidate inclusion and response magnitude criterion (RMC) for candidate exclusion. We compare these criteria with counterparts of other state-of-the-art greedy algorithms. Our theoretical analysis and numerical ablation studies reveal that SPC is critical to the superior performances of GPSP, and that RMC can enhance the robustness of feature identification when observations contain noises. We test and compare GPSP with other methods in diverse settings, including heterogeneous random block matrices, inexact observations, face recognition, and PDE identification. We find that GPSP outperforms the other algorithms in most cases for various levels of block sparsity and block sizes, justifying its effectiveness for general applications.</div></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"75 ","pages":"Article 101726"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520324001039","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we present a convergence analysis of the Group Projected Subspace Pursuit (GPSP) algorithm proposed by He et al. [26] (Group Projected subspace pursuit for IDENTification of variable coefficient differential equations (GP-IDENT), Journal of Computational Physics, 494, 112526) and extend its application to general tasks of block sparse signal recovery. Given an observation y and sampling matrix A, we focus on minimizing the approximation error with respect to the signal c with block sparsity constraints. We prove that when the sampling matrix A satisfies the Block Restricted Isometry Property (BRIP) with a sufficiently small Block Restricted Isometry Constant (BRIC), GPSP exactly recovers the true block sparse signals. When the observations are noisy, this convergence property of GPSP remains valid if the magnitude of the true signal is sufficiently large. GPSP selects the features by subspace projection criterion (SPC) for candidate inclusion and response magnitude criterion (RMC) for candidate exclusion. We compare these criteria with counterparts of other state-of-the-art greedy algorithms. Our theoretical analysis and numerical ablation studies reveal that SPC is critical to the superior performances of GPSP, and that RMC can enhance the robustness of feature identification when observations contain noises. We test and compare GPSP with other methods in diverse settings, including heterogeneous random block matrices, inexact observations, face recognition, and PDE identification. We find that GPSP outperforms the other algorithms in most cases for various levels of block sparsity and block sizes, justifying its effectiveness for general applications.
期刊介绍:
Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.