Group projected subspace pursuit for block sparse signal reconstruction: Convergence analysis and applications 1

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Roy Y. He , Haixia Liu , Hao Liu
{"title":"Group projected subspace pursuit for block sparse signal reconstruction: Convergence analysis and applications 1","authors":"Roy Y. He ,&nbsp;Haixia Liu ,&nbsp;Hao Liu","doi":"10.1016/j.acha.2024.101726","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we present a convergence analysis of the Group Projected Subspace Pursuit (GPSP) algorithm proposed by He et al. <span><span>[26]</span></span> (Group Projected subspace pursuit for IDENTification of variable coefficient differential equations (GP-IDENT), <em>Journal of Computational Physics</em>, 494, 112526) and extend its application to general tasks of block sparse signal recovery. Given an observation <strong>y</strong> and sampling matrix <strong>A</strong>, we focus on minimizing the approximation error <span><math><msubsup><mrow><mo>‖</mo><mi>A</mi><mi>c</mi><mo>−</mo><mi>y</mi><mo>‖</mo></mrow><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> with respect to the signal <strong>c</strong> with block sparsity constraints. We prove that when the sampling matrix <strong>A</strong> satisfies the Block Restricted Isometry Property (BRIP) with a sufficiently small Block Restricted Isometry Constant (BRIC), GPSP exactly recovers the true block sparse signals. When the observations are noisy, this convergence property of GPSP remains valid if the magnitude of the true signal is sufficiently large. GPSP selects the features by subspace projection criterion (SPC) for candidate inclusion and response magnitude criterion (RMC) for candidate exclusion. We compare these criteria with counterparts of other state-of-the-art greedy algorithms. Our theoretical analysis and numerical ablation studies reveal that SPC is critical to the superior performances of GPSP, and that RMC can enhance the robustness of feature identification when observations contain noises. We test and compare GPSP with other methods in diverse settings, including heterogeneous random block matrices, inexact observations, face recognition, and PDE identification. We find that GPSP outperforms the other algorithms in most cases for various levels of block sparsity and block sizes, justifying its effectiveness for general applications.</div></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"75 ","pages":"Article 101726"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520324001039","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a convergence analysis of the Group Projected Subspace Pursuit (GPSP) algorithm proposed by He et al. [26] (Group Projected subspace pursuit for IDENTification of variable coefficient differential equations (GP-IDENT), Journal of Computational Physics, 494, 112526) and extend its application to general tasks of block sparse signal recovery. Given an observation y and sampling matrix A, we focus on minimizing the approximation error Acy22 with respect to the signal c with block sparsity constraints. We prove that when the sampling matrix A satisfies the Block Restricted Isometry Property (BRIP) with a sufficiently small Block Restricted Isometry Constant (BRIC), GPSP exactly recovers the true block sparse signals. When the observations are noisy, this convergence property of GPSP remains valid if the magnitude of the true signal is sufficiently large. GPSP selects the features by subspace projection criterion (SPC) for candidate inclusion and response magnitude criterion (RMC) for candidate exclusion. We compare these criteria with counterparts of other state-of-the-art greedy algorithms. Our theoretical analysis and numerical ablation studies reveal that SPC is critical to the superior performances of GPSP, and that RMC can enhance the robustness of feature identification when observations contain noises. We test and compare GPSP with other methods in diverse settings, including heterogeneous random block matrices, inexact observations, face recognition, and PDE identification. We find that GPSP outperforms the other algorithms in most cases for various levels of block sparsity and block sizes, justifying its effectiveness for general applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信