High fidelity numerical modelling of European brushwood groyne fluid-structure-interaction: Parametrization through Darcy–Forchheimer, reflection and transmission coefficients

IF 4.2 2区 工程技术 Q1 ENGINEERING, CIVIL
Felix Spröer , Oliver Lojek , Christina Bischoff , Dorothea Bunzel , Maike Paul , Nils Goseberg
{"title":"High fidelity numerical modelling of European brushwood groyne fluid-structure-interaction: Parametrization through Darcy–Forchheimer, reflection and transmission coefficients","authors":"Felix Spröer ,&nbsp;Oliver Lojek ,&nbsp;Christina Bischoff ,&nbsp;Dorothea Bunzel ,&nbsp;Maike Paul ,&nbsp;Nils Goseberg","doi":"10.1016/j.coastaleng.2024.104659","DOIUrl":null,"url":null,"abstract":"<div><div>The shoreline retreat of salt marshes and tidal flats due to both accelerated rates of sea level rise (SLR) and altered sediment dynamics as a result of the interlinked impacts of climate change is becoming increasingly visible on a global scale. In particular, salt marsh retreat amplifies pressure on the main coastal protection facilities in areas of coastal squeeze and at the same time leads to the loss of unique biodiverse wetland ecosystems that provide a wide range of key ecosystem services. Salt marshes are generally able to dynamically adapt to SLR through vertical sediment accretion and lateral expansion under hydrodynamically calmed conditions, as long as sufficient sediment budgets are available. However, in areas of little or no foreshore growth, facilitating sufficient sediment accretion is essential to ensure optimal coastal foreshore management. In Northern Europe, brushwood groyne fields used for centuries provide such hydrodynamically calmed settlement spaces that facilitate sediment accretion, yet they are insufficiently investigated and parametrized in regard to their flow-retentive effectiveness. Hence, this study parametrizes European brushwood groynes in the framework of a Darcy–Forchheimer model through a three-dimensional numerical modelling suite within the numerical framework REEF3D:CFD to quantify the fluid–structure interaction of European brushwood groynes systematically. Through validation with an existent laboratory dataset, steady-state current as well as oscillatory wave brushwood groyne interaction is investigated, providing details on flow retention, wave transmissivity and reflectivity. For the first time, laminar and turbulent resistance coefficients of European brushwood groynes are presented that enable the representation of European brushwood groynes in phase-resolved numerical modelling approaches. Furthermore, in-depth wave transmission and reflection coefficients are derived for a vast range of hydrodynamic conditions and numerous relevant brushwood groyne construction variations relevant to coastal protection. The numerical results revealed transmission coefficients in the range of 0.15 to 0.87 and reflection coefficients in the range from 0.17 to 0.73. State of the art and novel parametrized fit-equations are derived from the wave transmission and reflection coefficients, providing readily available tools to estimate European brushwood groyne transmissivity and reflectivity. In turn, this study serves as a first primer for optimizing the design of European brushwood groyne fields and comparable coastal protection structures aimed at facilitating sediment deposition and foreshore stabilization in order to foster the protective capabilities of coastal wetlands and their ecosystem services now and in the future.</div></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":"197 ","pages":"Article 104659"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378383924002072","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

The shoreline retreat of salt marshes and tidal flats due to both accelerated rates of sea level rise (SLR) and altered sediment dynamics as a result of the interlinked impacts of climate change is becoming increasingly visible on a global scale. In particular, salt marsh retreat amplifies pressure on the main coastal protection facilities in areas of coastal squeeze and at the same time leads to the loss of unique biodiverse wetland ecosystems that provide a wide range of key ecosystem services. Salt marshes are generally able to dynamically adapt to SLR through vertical sediment accretion and lateral expansion under hydrodynamically calmed conditions, as long as sufficient sediment budgets are available. However, in areas of little or no foreshore growth, facilitating sufficient sediment accretion is essential to ensure optimal coastal foreshore management. In Northern Europe, brushwood groyne fields used for centuries provide such hydrodynamically calmed settlement spaces that facilitate sediment accretion, yet they are insufficiently investigated and parametrized in regard to their flow-retentive effectiveness. Hence, this study parametrizes European brushwood groynes in the framework of a Darcy–Forchheimer model through a three-dimensional numerical modelling suite within the numerical framework REEF3D:CFD to quantify the fluid–structure interaction of European brushwood groynes systematically. Through validation with an existent laboratory dataset, steady-state current as well as oscillatory wave brushwood groyne interaction is investigated, providing details on flow retention, wave transmissivity and reflectivity. For the first time, laminar and turbulent resistance coefficients of European brushwood groynes are presented that enable the representation of European brushwood groynes in phase-resolved numerical modelling approaches. Furthermore, in-depth wave transmission and reflection coefficients are derived for a vast range of hydrodynamic conditions and numerous relevant brushwood groyne construction variations relevant to coastal protection. The numerical results revealed transmission coefficients in the range of 0.15 to 0.87 and reflection coefficients in the range from 0.17 to 0.73. State of the art and novel parametrized fit-equations are derived from the wave transmission and reflection coefficients, providing readily available tools to estimate European brushwood groyne transmissivity and reflectivity. In turn, this study serves as a first primer for optimizing the design of European brushwood groyne fields and comparable coastal protection structures aimed at facilitating sediment deposition and foreshore stabilization in order to foster the protective capabilities of coastal wetlands and their ecosystem services now and in the future.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Coastal Engineering
Coastal Engineering 工程技术-工程:大洋
CiteScore
9.20
自引率
13.60%
发文量
0
审稿时长
3.5 months
期刊介绍: Coastal Engineering is an international medium for coastal engineers and scientists. Combining practical applications with modern technological and scientific approaches, such as mathematical and numerical modelling, laboratory and field observations and experiments, it publishes fundamental studies as well as case studies on the following aspects of coastal, harbour and offshore engineering: waves, currents and sediment transport; coastal, estuarine and offshore morphology; technical and functional design of coastal and harbour structures; morphological and environmental impact of coastal, harbour and offshore structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信