Camera-aware graph multi-domain adaptive learning for unsupervised person re-identification

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zhidan Ran, Xiaobo Lu, Xuan Wei, Wei Liu
{"title":"Camera-aware graph multi-domain adaptive learning for unsupervised person re-identification","authors":"Zhidan Ran,&nbsp;Xiaobo Lu,&nbsp;Xuan Wei,&nbsp;Wei Liu","doi":"10.1016/j.patcog.2024.111217","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, unsupervised person re-identification (Re-ID) has gained much attention due to its important practical significance in real-world application scenarios without pairwise labeled data. A key challenge for unsupervised person Re-ID is learning discriminative and robust feature representations under cross-camera scene variation. Contrastive learning approaches treat unsupervised representation learning as a dictionary look-up task. However, existing methods ignore both intra- and inter-camera semantic associations during training. In this paper, we propose a novel unsupervised person Re-ID framework, Camera-Aware Graph Multi-Domain Adaptive Learning (CGMAL), which can conduct multi-domain feature transfer with semantic propagation for learning discriminative domain-invariant representations. Specifically, we treat each camera as a distinct domain and extract image samples from every camera domain to form a mini-batch. A heterogeneous graph is constructed for representing the relationships between all instances in a mini-batch. Then a Graph Convolutional Network (GCN) is employed to fuse the image samples into a unified space and implement promising semantic transfer for providing ideal feature representations. Subsequently, we construct the memory-based non-parametric contrastive loss to train the model. In particular, we design an adversarial training scheme for transferring the knowledge learned by GCN to the feature extractor. Experimental experiments on three benchmarks validate that our proposed approach is superior to the state-of-the-art unsupervised methods.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"161 ","pages":"Article 111217"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320324009683","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, unsupervised person re-identification (Re-ID) has gained much attention due to its important practical significance in real-world application scenarios without pairwise labeled data. A key challenge for unsupervised person Re-ID is learning discriminative and robust feature representations under cross-camera scene variation. Contrastive learning approaches treat unsupervised representation learning as a dictionary look-up task. However, existing methods ignore both intra- and inter-camera semantic associations during training. In this paper, we propose a novel unsupervised person Re-ID framework, Camera-Aware Graph Multi-Domain Adaptive Learning (CGMAL), which can conduct multi-domain feature transfer with semantic propagation for learning discriminative domain-invariant representations. Specifically, we treat each camera as a distinct domain and extract image samples from every camera domain to form a mini-batch. A heterogeneous graph is constructed for representing the relationships between all instances in a mini-batch. Then a Graph Convolutional Network (GCN) is employed to fuse the image samples into a unified space and implement promising semantic transfer for providing ideal feature representations. Subsequently, we construct the memory-based non-parametric contrastive loss to train the model. In particular, we design an adversarial training scheme for transferring the knowledge learned by GCN to the feature extractor. Experimental experiments on three benchmarks validate that our proposed approach is superior to the state-of-the-art unsupervised methods.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pattern Recognition
Pattern Recognition 工程技术-工程:电子与电气
CiteScore
14.40
自引率
16.20%
发文量
683
审稿时长
5.6 months
期刊介绍: The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信