Freeze-thaw synergistic salt template prepared self-supporting MXene/wood-derived porous carbon electrode for supercapacitors

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS
Shengzhang Deng , Jian Zhang , Lin Lin , Jing Liu , Junyou Shi
{"title":"Freeze-thaw synergistic salt template prepared self-supporting MXene/wood-derived porous carbon electrode for supercapacitors","authors":"Shengzhang Deng ,&nbsp;Jian Zhang ,&nbsp;Lin Lin ,&nbsp;Jing Liu ,&nbsp;Junyou Shi","doi":"10.1016/j.est.2024.114846","DOIUrl":null,"url":null,"abstract":"<div><div>Supercapacitors are anticipated to be utilized in the upcoming generation of emerging energy storage devices. The electrode stands out as the most crucial component of the supercapacitor, and a bulk electrode containing sufficient electrochemically active substances is beneficial for enhancing the energy density of the energy storage device. Furthermore, the pore structure and wettability regulation of the electrode are pivotal factors that determine its electrochemical performance. In this study, we propose a monolithic electrode which was created by impregnating different concentrations of MXene dispersions into wood-based carbon materials co-treated with freeze-thaw/LiCl salt template, assisted by freezing treatment. The integration of MXene and freeze-thaw/LiCl salt template wood results in a layered porous structure that enhances both wettability and conductivity of the electrode. Freeze-thaw/LiCl salt template carbonized wood@MXene-4 (FCW@MXene-4) demonstrates an impressive electrochemical performance reaching 7.7 F cm<sup>−2</sup> (184.5 F g<sup>−1</sup>) at a current density of 1 mA cm<sup>−2</sup>. Additionally, when assembled into a symmetric supercapacitor (SSC), it exhibits high specific capacitance at 3.4 F cm<sup>−2</sup> (34.1 F g<sup>−1</sup>/17 F cm<sup>−3</sup>) and high energy density at 0.478 mWh cm<sup>−2</sup> (6 Wh kg<sup>−1</sup>/2.39 mWh cm<sup>−3</sup>) at 1 mA cm<sup>−2</sup>, with a capacity retention rate of 88 % after 10,000 cycles. This research introduces an innovative self-supporting thick electrode design strategy for high-performance energy storage devices.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"106 ","pages":"Article 114846"},"PeriodicalIF":8.9000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X24044323","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Supercapacitors are anticipated to be utilized in the upcoming generation of emerging energy storage devices. The electrode stands out as the most crucial component of the supercapacitor, and a bulk electrode containing sufficient electrochemically active substances is beneficial for enhancing the energy density of the energy storage device. Furthermore, the pore structure and wettability regulation of the electrode are pivotal factors that determine its electrochemical performance. In this study, we propose a monolithic electrode which was created by impregnating different concentrations of MXene dispersions into wood-based carbon materials co-treated with freeze-thaw/LiCl salt template, assisted by freezing treatment. The integration of MXene and freeze-thaw/LiCl salt template wood results in a layered porous structure that enhances both wettability and conductivity of the electrode. Freeze-thaw/LiCl salt template carbonized wood@MXene-4 (FCW@MXene-4) demonstrates an impressive electrochemical performance reaching 7.7 F cm−2 (184.5 F g−1) at a current density of 1 mA cm−2. Additionally, when assembled into a symmetric supercapacitor (SSC), it exhibits high specific capacitance at 3.4 F cm−2 (34.1 F g−1/17 F cm−3) and high energy density at 0.478 mWh cm−2 (6 Wh kg−1/2.39 mWh cm−3) at 1 mA cm−2, with a capacity retention rate of 88 % after 10,000 cycles. This research introduces an innovative self-supporting thick electrode design strategy for high-performance energy storage devices.
冻融协同盐模板制备自支撑MXene/木基多孔碳超级电容器电极
超级电容器有望应用于新一代的新兴储能设备中。电极是超级电容器最关键的组成部分,含有足够电化学活性物质的大块电极有利于提高储能装置的能量密度。此外,电极的孔隙结构和润湿性调节是决定其电化学性能的关键因素。在这项研究中,我们提出了一种单片电极,该电极是通过将不同浓度的MXene分散体浸渍在冻融/LiCl盐模板共处理的木基碳材料中,并辅以冷冻处理而制成的。MXene和冻融/LiCl盐模板木的结合形成了层状多孔结构,提高了电极的润湿性和导电性。冻融/LiCl盐模板碳化wood@MXene-4 (FCW@MXene-4)显示出令人印象深刻的电化学性能,在电流密度为1ma cm−2时达到7.7 F cm−2 (184.5 F g−1)。此外,当组装成对称超级电容器(SSC)时,它具有3.4 F cm−2 (34.1 F g−1/17 F cm−3)的高比电容和1 mA cm−2时0.478 mWh cm−2 (6 Wh kg−1/2.39 mWh cm−3)的高能量密度,在10,000次循环后容量保持率为88%。本研究提出一种创新的自支撑厚电极设计策略,用于高性能储能装置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信