Dopamine-modified separator anchoring polysulfides via electrostatic interaction for enhanced Lithium-sulfur batteries

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS
Qin Dong , Xiangwei Zhao , Xingyue Ren , Wei Hong , Rong Li , Xinglong Gou , Tao Wang , Cunpu Li
{"title":"Dopamine-modified separator anchoring polysulfides via electrostatic interaction for enhanced Lithium-sulfur batteries","authors":"Qin Dong ,&nbsp;Xiangwei Zhao ,&nbsp;Xingyue Ren ,&nbsp;Wei Hong ,&nbsp;Rong Li ,&nbsp;Xinglong Gou ,&nbsp;Tao Wang ,&nbsp;Cunpu Li","doi":"10.1016/j.est.2024.114855","DOIUrl":null,"url":null,"abstract":"<div><div>Lithium‑sulfur (Li<img>S) batteries possess high energy density and low cost, which have been considered as the most promising energy storage devices. However, the commercialization of Li<img>S batteries has been impeded by the severe shuttling of soluble polysulfides during the charge-discharge cycling. In this work, we propose a novel strategy to modify polypropylene (PP) separator by grafting dopamine, a compound with phenolic hydroxyl and amino groups, to anchor polysulfides while maintaining the separator's porous structure for efficient lithium ion transport. Density functional theory (DFT) calculations reveal that dopamine polymer layer can effectively suppress polysulfides shuttling through electrostatic interaction with lithium atoms in polysulfides. Moreover, dopamine-modified separator enhances the electrolytes affinity and facilitates lithium ion transport. Cyclic voltammetry measurements, a high initial capacity of 1123 mAh·g<sup>−1</sup> at 0.5C, lithium metal corrosion resistance, and the morphology of the cycled separators all confirm that dopamine-modified separator effectively mitigates the shuttle effect while maintaining the improved battery performance. This work opens up a new approach for the practical application of Li<img>S batteries.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"106 ","pages":"Article 114855"},"PeriodicalIF":8.9000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X24044414","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium‑sulfur (LiS) batteries possess high energy density and low cost, which have been considered as the most promising energy storage devices. However, the commercialization of LiS batteries has been impeded by the severe shuttling of soluble polysulfides during the charge-discharge cycling. In this work, we propose a novel strategy to modify polypropylene (PP) separator by grafting dopamine, a compound with phenolic hydroxyl and amino groups, to anchor polysulfides while maintaining the separator's porous structure for efficient lithium ion transport. Density functional theory (DFT) calculations reveal that dopamine polymer layer can effectively suppress polysulfides shuttling through electrostatic interaction with lithium atoms in polysulfides. Moreover, dopamine-modified separator enhances the electrolytes affinity and facilitates lithium ion transport. Cyclic voltammetry measurements, a high initial capacity of 1123 mAh·g−1 at 0.5C, lithium metal corrosion resistance, and the morphology of the cycled separators all confirm that dopamine-modified separator effectively mitigates the shuttle effect while maintaining the improved battery performance. This work opens up a new approach for the practical application of LiS batteries.
增强型锂硫电池中多巴胺改性分离器静电作用锚定多硫化物
锂硫电池具有高能量密度和低成本的特点,被认为是最有前途的储能设备。然而,锂离子电池在充放电循环过程中存在可溶性多硫化物的严重穿梭,阻碍了锂离子电池的商业化。在这项工作中,我们提出了一种新的策略,通过接枝多巴胺(一种具有酚羟基和氨基的化合物)来修饰聚丙烯(PP)分离器,以锚定多硫化物,同时保持分离器的多孔结构以实现高效的锂离子运输。密度泛函理论(DFT)计算表明,多巴胺聚合物层可以通过与多硫化物中的锂原子静电相互作用有效抑制多硫化物的穿梭。此外,多巴胺修饰的隔膜增强了电解质的亲和力,促进了锂离子的运输。循环伏安法测量、0.5℃下1123 mAh·g−1的高初始容量、锂金属耐腐蚀性以及循环隔膜的形貌都证实了多巴胺修饰的隔膜有效地减轻了穿梭效应,同时保持了改进的电池性能。这项工作为锂离子电池的实际应用开辟了一条新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信