Multi-parameter coupling modeling method and hybrid mechanism of concrete-encased CFST hybrid structures

IF 4 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Dan-Yang Ma, Shuai Ma, Chuan-Chuan Hou
{"title":"Multi-parameter coupling modeling method and hybrid mechanism of concrete-encased CFST hybrid structures","authors":"Dan-Yang Ma,&nbsp;Shuai Ma,&nbsp;Chuan-Chuan Hou","doi":"10.1016/j.jcsr.2024.109204","DOIUrl":null,"url":null,"abstract":"<div><div>Concrete-encased concrete-filled steel tubular (CFST) hybrid structures consist of encased CFST components and reinforced concrete (RC) encasement, posing unique challenges related to their hybrid mechanisms and coupling effects. This study addresses these issues by proposing an automatic and efficient Finite Element (FE) modeling method, which accounts for multiple constitutive models of confined concrete, meticulous grid division and reasonable interaction. The FE modeling method was packaged with a user-friendly graphical interface in the software ‘Auto CECFST’, which has been shared on GitHub(<span><span>https://github.com/CECFST/Auto-CECFST.git</span><svg><path></path></svg></span>). The modeling method has been verified by test results on the strength, stiffness and deformation capacity. Utilizing the refined FE modeling method, 7776 FE models are generated based on an orthogonal combination of 7 critical parameters of concrete-encased CFST hybrid structures. To accurately define failure modes, stress ratio (<em>φ</em>) was proposed to achieve quantitative analysis on the failure mode, followed by a comprehensive investigation into the full-range analysis of the hybrid mechanism of two components. Moreover, further exploration focused on multi-parameter coupling effects of critical mechanism characteristics, including strength, stiffness, and deformation capacity, elucidating the hybrid mechanism and mechanical similarities between single and multi-chord structures. Based on the above analysis, the balance of strength and deformation ability could be achieved by certain parameter ranges. Finally, available strength and stiffness calculation methods are validated against experimental and FE results under three typical failure modes, revealing the advantages and limitations of calculation methods on the basis of mechanics and data statistics, which provides a basis for security structural design.</div></div>","PeriodicalId":15557,"journal":{"name":"Journal of Constructional Steel Research","volume":"226 ","pages":"Article 109204"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Constructional Steel Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143974X24007545","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Concrete-encased concrete-filled steel tubular (CFST) hybrid structures consist of encased CFST components and reinforced concrete (RC) encasement, posing unique challenges related to their hybrid mechanisms and coupling effects. This study addresses these issues by proposing an automatic and efficient Finite Element (FE) modeling method, which accounts for multiple constitutive models of confined concrete, meticulous grid division and reasonable interaction. The FE modeling method was packaged with a user-friendly graphical interface in the software ‘Auto CECFST’, which has been shared on GitHub(https://github.com/CECFST/Auto-CECFST.git). The modeling method has been verified by test results on the strength, stiffness and deformation capacity. Utilizing the refined FE modeling method, 7776 FE models are generated based on an orthogonal combination of 7 critical parameters of concrete-encased CFST hybrid structures. To accurately define failure modes, stress ratio (φ) was proposed to achieve quantitative analysis on the failure mode, followed by a comprehensive investigation into the full-range analysis of the hybrid mechanism of two components. Moreover, further exploration focused on multi-parameter coupling effects of critical mechanism characteristics, including strength, stiffness, and deformation capacity, elucidating the hybrid mechanism and mechanical similarities between single and multi-chord structures. Based on the above analysis, the balance of strength and deformation ability could be achieved by certain parameter ranges. Finally, available strength and stiffness calculation methods are validated against experimental and FE results under three typical failure modes, revealing the advantages and limitations of calculation methods on the basis of mechanics and data statistics, which provides a basis for security structural design.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Constructional Steel Research
Journal of Constructional Steel Research 工程技术-工程:土木
CiteScore
7.90
自引率
19.50%
发文量
550
审稿时长
46 days
期刊介绍: The Journal of Constructional Steel Research provides an international forum for the presentation and discussion of the latest developments in structural steel research and their applications. It is aimed not only at researchers but also at those likely to be most affected by research results, i.e. designers and fabricators. Original papers of a high standard dealing with all aspects of steel research including theoretical and experimental research on elements, assemblages, connection and material properties are considered for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信