Leveraging metabolomics and ionomics to illuminate aluminum-induced toxicity in mouse organs

IF 6.7 2区 环境科学与生态学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Shiyuan Zhao , Jinxiu Guo , Yufei Wei , Junjun Meng , Xue Chu , Shiyu Zhao , Yanli Liu , Wenxue Sun , Jianhua Wang , Xin Xie , Pei Jiang
{"title":"Leveraging metabolomics and ionomics to illuminate aluminum-induced toxicity in mouse organs","authors":"Shiyuan Zhao ,&nbsp;Jinxiu Guo ,&nbsp;Yufei Wei ,&nbsp;Junjun Meng ,&nbsp;Xue Chu ,&nbsp;Shiyu Zhao ,&nbsp;Yanli Liu ,&nbsp;Wenxue Sun ,&nbsp;Jianhua Wang ,&nbsp;Xin Xie ,&nbsp;Pei Jiang","doi":"10.1016/j.eti.2024.103927","DOIUrl":null,"url":null,"abstract":"<div><div>Aluminum, a widely prevalent environmental pollutant, has been established to exert toxic effects on multiple organs in the human body. To gain a comprehensive understanding of these toxic effects and the mechanisms involved, this study aimed to assess potential correlations between metabolites and ion data through metabolomic and ionomic analyses. We sought to explore the intricate impact of aluminum on various organs in mice. Gas chromatography-mass spectrometry (GC-MS) and inductively coupled plasma-mass spectrometry (ICP-MS) were employed to conduct metabolomic and ionomic analyses on the hippocampus, cortex, heart, liver, spleen, lung, kidney, bone, intestine, stomach, and serum of both control and aluminum-exposed mice. Besides, histological examinations and behavioral experiments were conducted. Multivariate analysis revealed 91 differential metabolites across various organs, primarily encompassing amino acids, fatty acids, and carbohydrates. The implicated abnormal metabolic pathways included amino acid metabolism, arachidonic acid metabolism, and glutathione metabolism. Additionally, alterations in the homeostasis of ions such as manganese, zinc, selenium, iron, copper, phosphorus, magnesium, and calcium were observed in various organs, potentially influencing the activity of critical enzymes. The changes in these potential biomarkers and ions suggest toxic mechanisms of aluminum exposure involving oxidative stress, inflammatory responses, cellular signal dysregulation, disruption of key enzyme activities, and impaired energy metabolism. This study provides a novel perspective on understanding the toxic mechanisms of aluminum exposure, potentially contributing to the prevention and treatment of aluminum toxicity.</div></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"37 ","pages":"Article 103927"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology & Innovation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352186424004036","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aluminum, a widely prevalent environmental pollutant, has been established to exert toxic effects on multiple organs in the human body. To gain a comprehensive understanding of these toxic effects and the mechanisms involved, this study aimed to assess potential correlations between metabolites and ion data through metabolomic and ionomic analyses. We sought to explore the intricate impact of aluminum on various organs in mice. Gas chromatography-mass spectrometry (GC-MS) and inductively coupled plasma-mass spectrometry (ICP-MS) were employed to conduct metabolomic and ionomic analyses on the hippocampus, cortex, heart, liver, spleen, lung, kidney, bone, intestine, stomach, and serum of both control and aluminum-exposed mice. Besides, histological examinations and behavioral experiments were conducted. Multivariate analysis revealed 91 differential metabolites across various organs, primarily encompassing amino acids, fatty acids, and carbohydrates. The implicated abnormal metabolic pathways included amino acid metabolism, arachidonic acid metabolism, and glutathione metabolism. Additionally, alterations in the homeostasis of ions such as manganese, zinc, selenium, iron, copper, phosphorus, magnesium, and calcium were observed in various organs, potentially influencing the activity of critical enzymes. The changes in these potential biomarkers and ions suggest toxic mechanisms of aluminum exposure involving oxidative stress, inflammatory responses, cellular signal dysregulation, disruption of key enzyme activities, and impaired energy metabolism. This study provides a novel perspective on understanding the toxic mechanisms of aluminum exposure, potentially contributing to the prevention and treatment of aluminum toxicity.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Technology & Innovation
Environmental Technology & Innovation Environmental Science-General Environmental Science
CiteScore
14.00
自引率
4.20%
发文量
435
审稿时长
74 days
期刊介绍: Environmental Technology & Innovation adopts a challenge-oriented approach to solutions by integrating natural sciences to promote a sustainable future. The journal aims to foster the creation and development of innovative products, technologies, and ideas that enhance the environment, with impacts across soil, air, water, and food in rural and urban areas. As a platform for disseminating scientific evidence for environmental protection and sustainable development, the journal emphasizes fundamental science, methodologies, tools, techniques, and policy considerations. It emphasizes the importance of science and technology in environmental benefits, including smarter, cleaner technologies for environmental protection, more efficient resource processing methods, and the evidence supporting their effectiveness.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信