Comparative analysis of counter-current and co-current downer reactors using particle image velocimetry and computational particle-fluid dynamics

IF 5.5 Q1 ENGINEERING, CHEMICAL
Talal A. Aldugman , Mengmeng Cui , Abdulrahman Alzailaie , Abdullah Alhareth , Kenneth Langley , Lujain Alfilfil , Khalid Almajnouni , Jorge Gascon , Sigurdur Thoroddsen , Pedro Castaño
{"title":"Comparative analysis of counter-current and co-current downer reactors using particle image velocimetry and computational particle-fluid dynamics","authors":"Talal A. Aldugman ,&nbsp;Mengmeng Cui ,&nbsp;Abdulrahman Alzailaie ,&nbsp;Abdullah Alhareth ,&nbsp;Kenneth Langley ,&nbsp;Lujain Alfilfil ,&nbsp;Khalid Almajnouni ,&nbsp;Jorge Gascon ,&nbsp;Sigurdur Thoroddsen ,&nbsp;Pedro Castaño","doi":"10.1016/j.ceja.2024.100687","DOIUrl":null,"url":null,"abstract":"<div><div>We investigated the hydrodynamics in co- and counter-current downer operations using particle image velocimetry (PIV) and computational particle fluid dynamics simulations (CPFD). Pilot-scale experiments were conducted for fluid catalytic cracking (FCC) catalysts and sand, which verified the system stability and provided the validation basis for the simulation strategy. We compared the reactor characteristics of counter-current and co-current downers under different operating modes and conditions using PIV experiments and CPFD simulations. PIV experiments showed that the counter-current downer exhibits a more uniform particle velocity profile, with a gradient of only 8 % of the maximum velocity, compared to the co-current operation, which shows a significantly steeper gradient of 39.5 % from the maximum. Simulations confirmed that the counter-current downer reactor has 69 % higher solid holdup and 98 % longer residence time than the co-current operation. Thus, the counter-current downer reactor demonstrated intermediate behavior between the classical co-current downer and riser reactors, offering flexibility for industrial applications.</div></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":"21 ","pages":"Article 100687"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666821124001042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We investigated the hydrodynamics in co- and counter-current downer operations using particle image velocimetry (PIV) and computational particle fluid dynamics simulations (CPFD). Pilot-scale experiments were conducted for fluid catalytic cracking (FCC) catalysts and sand, which verified the system stability and provided the validation basis for the simulation strategy. We compared the reactor characteristics of counter-current and co-current downers under different operating modes and conditions using PIV experiments and CPFD simulations. PIV experiments showed that the counter-current downer exhibits a more uniform particle velocity profile, with a gradient of only 8 % of the maximum velocity, compared to the co-current operation, which shows a significantly steeper gradient of 39.5 % from the maximum. Simulations confirmed that the counter-current downer reactor has 69 % higher solid holdup and 98 % longer residence time than the co-current operation. Thus, the counter-current downer reactor demonstrated intermediate behavior between the classical co-current downer and riser reactors, offering flexibility for industrial applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Engineering Journal Advances
Chemical Engineering Journal Advances Engineering-Industrial and Manufacturing Engineering
CiteScore
8.30
自引率
0.00%
发文量
213
审稿时长
26 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信