Yi Sun , Xue-Ying Zhao , Yu-Kui Wang , Hai-Tao Zhao , Si-Si Xu , Pei-Zhi Li , Xiao-Chu Gao
{"title":"Study on temperature gradient of ultra-thick foam sandwich composite structure during curing","authors":"Yi Sun , Xue-Ying Zhao , Yu-Kui Wang , Hai-Tao Zhao , Si-Si Xu , Pei-Zhi Li , Xiao-Chu Gao","doi":"10.1016/j.csite.2024.105552","DOIUrl":null,"url":null,"abstract":"<div><div>This paper conducts numerical simulations and experimental measurements on the temperature distribution of ultra-thick foam sandwich composite structure with varying ply thicknesses, aiming to investigate the influence of prepreg ply thickness on the temperature gradient of foam sandwich structure. Firstly, the curing kinetic of CYCOM970/T300 prepreg was studied using non-isothermal differential scanning calorimetry (DSC). Then, thermal analysis of foam sandwich composite structure with different ply thicknesses was conducted using ABAQUS software combined with user subroutines. Subsequently, thermocouple sensors were used to measure the curing temperature of foam sandwich structure. The results indicate that the prepreg ply thickness has a significant impact on the temperature gradient during the curing process of foam sandwich structure. When there are a larger number of prepreg plies, overheating of the prepreg on the foam upper layer occurs, resulting in a significant temperature gradient in the thickness direction of the structure. In this case, reducing the heating rate of the autoclave curing process can effectively reduce the temperature overshoot of the prepreg on the foam upper layer.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"65 ","pages":"Article 105552"},"PeriodicalIF":6.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X24015831","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper conducts numerical simulations and experimental measurements on the temperature distribution of ultra-thick foam sandwich composite structure with varying ply thicknesses, aiming to investigate the influence of prepreg ply thickness on the temperature gradient of foam sandwich structure. Firstly, the curing kinetic of CYCOM970/T300 prepreg was studied using non-isothermal differential scanning calorimetry (DSC). Then, thermal analysis of foam sandwich composite structure with different ply thicknesses was conducted using ABAQUS software combined with user subroutines. Subsequently, thermocouple sensors were used to measure the curing temperature of foam sandwich structure. The results indicate that the prepreg ply thickness has a significant impact on the temperature gradient during the curing process of foam sandwich structure. When there are a larger number of prepreg plies, overheating of the prepreg on the foam upper layer occurs, resulting in a significant temperature gradient in the thickness direction of the structure. In this case, reducing the heating rate of the autoclave curing process can effectively reduce the temperature overshoot of the prepreg on the foam upper layer.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.