{"title":"Structural optimisation of free-swinging agrivoltaic fences","authors":"Benjamin Dardenne, Pierre Latteur","doi":"10.1016/j.rser.2024.115160","DOIUrl":null,"url":null,"abstract":"<div><div>Agrivoltaic fences enable farmers and ranchers to produce energy while maintaining profitable agricultural activity. They consist of vertical posts between which vertical solar panels are mounted. A significant part of the structural costs of these frames comes from their high wind load, which requires large diameter posts, often with wind bracing, and substantial foundations. This research focuses on free-swinging agrivoltaic fences, a new concept that allows panels to 'float' in the wind, an akin to clothes drying on a clothesline. In other words, the panels are suspended from hinged joints, allowing them to swing in strong winds. This study demonstrates that the internal forces in the posts are more than 8 times lower than those induced by fixed vertical panels and scales various parameters involved such as the height of the system, the wind force acting on the panel, its dimensions and weight. The results highlight the fact that the maximum forces generated in the posts of such a system are independent of the wind model considered and can be determined using only the weight of the panel, the height at which it is fixed and the position of the wind pressure on the panel's surface. Finally the study provides a much more reliable and safer design methodology than that used for vertical fixed panels. Design curves are established to provide designers with guidelines on what type of section to use, whether it is steel or timber.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":"210 ","pages":"Article 115160"},"PeriodicalIF":16.3000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Reviews","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364032124008864","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Agrivoltaic fences enable farmers and ranchers to produce energy while maintaining profitable agricultural activity. They consist of vertical posts between which vertical solar panels are mounted. A significant part of the structural costs of these frames comes from their high wind load, which requires large diameter posts, often with wind bracing, and substantial foundations. This research focuses on free-swinging agrivoltaic fences, a new concept that allows panels to 'float' in the wind, an akin to clothes drying on a clothesline. In other words, the panels are suspended from hinged joints, allowing them to swing in strong winds. This study demonstrates that the internal forces in the posts are more than 8 times lower than those induced by fixed vertical panels and scales various parameters involved such as the height of the system, the wind force acting on the panel, its dimensions and weight. The results highlight the fact that the maximum forces generated in the posts of such a system are independent of the wind model considered and can be determined using only the weight of the panel, the height at which it is fixed and the position of the wind pressure on the panel's surface. Finally the study provides a much more reliable and safer design methodology than that used for vertical fixed panels. Design curves are established to provide designers with guidelines on what type of section to use, whether it is steel or timber.
期刊介绍:
The mission of Renewable and Sustainable Energy Reviews is to disseminate the most compelling and pertinent critical insights in renewable and sustainable energy, fostering collaboration among the research community, private sector, and policy and decision makers. The journal aims to exchange challenges, solutions, innovative concepts, and technologies, contributing to sustainable development, the transition to a low-carbon future, and the attainment of emissions targets outlined by the United Nations Framework Convention on Climate Change.
Renewable and Sustainable Energy Reviews publishes a diverse range of content, including review papers, original research, case studies, and analyses of new technologies, all featuring a substantial review component such as critique, comparison, or analysis. Introducing a distinctive paper type, Expert Insights, the journal presents commissioned mini-reviews authored by field leaders, addressing topics of significant interest. Case studies undergo consideration only if they showcase the work's applicability to other regions or contribute valuable insights to the broader field of renewable and sustainable energy. Notably, a bibliographic or literature review lacking critical analysis is deemed unsuitable for publication.