Visualizing the Li distribution in an all-solid-state battery composite electrode using combined plasma focused-ion beam microscopy and secondary-ion mass spectroscopy
Yige Sun , Gareth M. Hughes , Junfu Bu , Junliang Liu , Chris R.M. Grovenor , Patrick S. Grant
{"title":"Visualizing the Li distribution in an all-solid-state battery composite electrode using combined plasma focused-ion beam microscopy and secondary-ion mass spectroscopy","authors":"Yige Sun , Gareth M. Hughes , Junfu Bu , Junliang Liu , Chris R.M. Grovenor , Patrick S. Grant","doi":"10.1016/j.micron.2024.103746","DOIUrl":null,"url":null,"abstract":"<div><div>Using a Li metal anode, the all-solid-state battery (ASSB) promises a step change in specific energy over Li-ion batteries and the potential for increased battery safety. ASSBs rely critically on the efficient movement of Li charge carriers through a Li-conducting solid electrolyte (SE) separator and throughout a composite cathode (CC) comprising active particles, particulate SE, polymeric binder, and carbon. Unfortunately, there is no readily accessible laboratory method to visualise Li distributions at both particle and electrode scales to help understand and optimise Li electrode dynamics in ASSBs. We report a method to map all electrode elements in a 3D volume, including Li, within a typical ASSB composite cathode. The method combines a xenon plasma focused-ion beam (PFIB) for 3D milling, energy dispersive X-ray spectroscopy (EDS) to map non-Li elements, and secondary ion mass spectrometry (SIMS) to map Li. We manipulate 3D EDS and SIMS datasets into a common format and then recombine them in 3D to differentiate the different materials at high resolution. This new approach can be applied to understand and optimise the role of microstructure in controlling ASSB performance.</div></div>","PeriodicalId":18501,"journal":{"name":"Micron","volume":"190 ","pages":"Article 103746"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micron","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096843282400163X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
Using a Li metal anode, the all-solid-state battery (ASSB) promises a step change in specific energy over Li-ion batteries and the potential for increased battery safety. ASSBs rely critically on the efficient movement of Li charge carriers through a Li-conducting solid electrolyte (SE) separator and throughout a composite cathode (CC) comprising active particles, particulate SE, polymeric binder, and carbon. Unfortunately, there is no readily accessible laboratory method to visualise Li distributions at both particle and electrode scales to help understand and optimise Li electrode dynamics in ASSBs. We report a method to map all electrode elements in a 3D volume, including Li, within a typical ASSB composite cathode. The method combines a xenon plasma focused-ion beam (PFIB) for 3D milling, energy dispersive X-ray spectroscopy (EDS) to map non-Li elements, and secondary ion mass spectrometry (SIMS) to map Li. We manipulate 3D EDS and SIMS datasets into a common format and then recombine them in 3D to differentiate the different materials at high resolution. This new approach can be applied to understand and optimise the role of microstructure in controlling ASSB performance.
期刊介绍:
Micron is an interdisciplinary forum for all work that involves new applications of microscopy or where advanced microscopy plays a central role. The journal will publish on the design, methods, application, practice or theory of microscopy and microanalysis, including reports on optical, electron-beam, X-ray microtomography, and scanning-probe systems. It also aims at the regular publication of review papers, short communications, as well as thematic issues on contemporary developments in microscopy and microanalysis. The journal embraces original research in which microscopy has contributed significantly to knowledge in biology, life science, nanoscience and nanotechnology, materials science and engineering.