Predicting the diffusion coefficients of rejuvenators into bitumens using molecular dynamics, machine learning, and force field atom types

IF 7.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Eli I. Assaf , Xueyan Liu , Peng Lin , Shisong Ren , Sandra Erkens
{"title":"Predicting the diffusion coefficients of rejuvenators into bitumens using molecular dynamics, machine learning, and force field atom types","authors":"Eli I. Assaf ,&nbsp;Xueyan Liu ,&nbsp;Peng Lin ,&nbsp;Shisong Ren ,&nbsp;Sandra Erkens","doi":"10.1016/j.matdes.2024.113502","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the use of chemical descriptors derived from force field atom types to predict Fickian diffusion coefficients of rejuvenators in bitumen, utilizing machine learning models trained on data from 240 non-equilibrium molecular dynamics simulations. The simulations cover three bitumen types (NO, TO, FO), five aging degrees, and four temperatures (60 °C, 120 °C, 160 °C, 200 °C), capturing diffusion coefficients ranging from 0.0068e-10 m<sup>2</sup>/s in highly aged bitumens at 60 °C to 4.35e-10 m<sup>2</sup>/s in fresher samples at 200 °C. The MLM, built with 18 chemical descriptors for bitumen and rejuvenator sides, achieves an R<sup>2</sup> of 0.97, accurately predicting diffusion across varied conditions. This approach abstracts away from the need for repeated MD simulations, enabling diffusion predictions even for systems outside the original dataset. The manuscript presents three case studies to illustrate how the model can be used for the iterative design of rejuvenators by optimizing molecular structures based on critical chemical features, such as rejuvenator oxygen content, bitumen sulfur content, and molecular weights. It also demonstrates how the model offers a practical framework for understanding the diffusion and performance of rejuvenators by linking time-dependent factors—such as concentration, depth, and rejuvenation time—with the bulk properties of bitumen-rejuvenator systems, facilitating industrial applications.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"248 ","pages":"Article 113502"},"PeriodicalIF":7.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127524008773","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the use of chemical descriptors derived from force field atom types to predict Fickian diffusion coefficients of rejuvenators in bitumen, utilizing machine learning models trained on data from 240 non-equilibrium molecular dynamics simulations. The simulations cover three bitumen types (NO, TO, FO), five aging degrees, and four temperatures (60 °C, 120 °C, 160 °C, 200 °C), capturing diffusion coefficients ranging from 0.0068e-10 m2/s in highly aged bitumens at 60 °C to 4.35e-10 m2/s in fresher samples at 200 °C. The MLM, built with 18 chemical descriptors for bitumen and rejuvenator sides, achieves an R2 of 0.97, accurately predicting diffusion across varied conditions. This approach abstracts away from the need for repeated MD simulations, enabling diffusion predictions even for systems outside the original dataset. The manuscript presents three case studies to illustrate how the model can be used for the iterative design of rejuvenators by optimizing molecular structures based on critical chemical features, such as rejuvenator oxygen content, bitumen sulfur content, and molecular weights. It also demonstrates how the model offers a practical framework for understanding the diffusion and performance of rejuvenators by linking time-dependent factors—such as concentration, depth, and rejuvenation time—with the bulk properties of bitumen-rejuvenator systems, facilitating industrial applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials & Design
Materials & Design Engineering-Mechanical Engineering
CiteScore
14.30
自引率
7.10%
发文量
1028
审稿时长
85 days
期刊介绍: Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry. The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信