Xuan Wang , Yuxuan Yang , Zehua Li , Tiantian Li , Chunmei Niu , Ruolin Wang
{"title":"Natural composite hydrogel regulated interface polymerization to prepare high performance nanofiltration membranes with wrinkled structure","authors":"Xuan Wang , Yuxuan Yang , Zehua Li , Tiantian Li , Chunmei Niu , Ruolin Wang","doi":"10.1016/j.memsci.2024.123567","DOIUrl":null,"url":null,"abstract":"<div><div>Composite hydrogels offer significant potential in the development of nanofiltration membranes. Nonetheless, fabricating defect-free and ultra-thin polyamide membranes with wrinkled structure on three-dimensional composite hydrogel substrates through conventional interfacial polymerization remains a considerable challenge. Achieving both enhanced water permeability and ionic selectivity simultaneously is particularly challenging. In this study, a hydroxyl-enriched natural composite hydrogel, carboxyl methylated Astragalus gum/acid-soluble chitosan/multi-walled carboxylated carbon nanotubes (CTG/CS@CNT-COOH), was introduced as an intermediate layer to improve the process. This interlayer effectively enhanced PIP retention and reduced its diffusion rate into the organic phase by over 90 % through hydrogen bonding and physical barriers. The resulting polyamide layer, with a thickness of only 79.0 nm, exhibited a desirable wrinkled structure. SEM and AFM were employed to assess membrane morphology, while ATR-FTIR and XPS provided a detailed characterization of the membrane surface chemistry. The hydrophilicity and charge properties of various membranes were examined using water contact angle and zeta potential measurements. Notably, the modified thin-film composite membrane (TFC4) demonstrated exceptional pure water permeance, reaching 23.31 L m<sup>−2</sup> h<sup>−1</sup>·bar<sup>−1</sup>, compared to 8.63 L m<sup>−2</sup> h<sup>−1</sup>·bar<sup>−1</sup> for TFC membrane lacking the composite hydrogel, alongside a Na<sub>2</sub>SO<sub>4</sub> rejection rate of 98.38 %. Furthermore, the membrane exhibited strong fouling resistance and maintained structural integrity throughout extended filtration tests. This study presents a straightforward strategy for developing high-performance TFC membranes with enhanced efficiency.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"717 ","pages":"Article 123567"},"PeriodicalIF":8.4000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037673882401161X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Composite hydrogels offer significant potential in the development of nanofiltration membranes. Nonetheless, fabricating defect-free and ultra-thin polyamide membranes with wrinkled structure on three-dimensional composite hydrogel substrates through conventional interfacial polymerization remains a considerable challenge. Achieving both enhanced water permeability and ionic selectivity simultaneously is particularly challenging. In this study, a hydroxyl-enriched natural composite hydrogel, carboxyl methylated Astragalus gum/acid-soluble chitosan/multi-walled carboxylated carbon nanotubes (CTG/CS@CNT-COOH), was introduced as an intermediate layer to improve the process. This interlayer effectively enhanced PIP retention and reduced its diffusion rate into the organic phase by over 90 % through hydrogen bonding and physical barriers. The resulting polyamide layer, with a thickness of only 79.0 nm, exhibited a desirable wrinkled structure. SEM and AFM were employed to assess membrane morphology, while ATR-FTIR and XPS provided a detailed characterization of the membrane surface chemistry. The hydrophilicity and charge properties of various membranes were examined using water contact angle and zeta potential measurements. Notably, the modified thin-film composite membrane (TFC4) demonstrated exceptional pure water permeance, reaching 23.31 L m−2 h−1·bar−1, compared to 8.63 L m−2 h−1·bar−1 for TFC membrane lacking the composite hydrogel, alongside a Na2SO4 rejection rate of 98.38 %. Furthermore, the membrane exhibited strong fouling resistance and maintained structural integrity throughout extended filtration tests. This study presents a straightforward strategy for developing high-performance TFC membranes with enhanced efficiency.
期刊介绍:
The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.