Stochastic and deterministic parabolic equations with bounded measurable coefficients in space and time: Well-posedness and maximal regularity

IF 2.4 2区 数学 Q1 MATHEMATICS
Pascal Auscher , Pierre Portal
{"title":"Stochastic and deterministic parabolic equations with bounded measurable coefficients in space and time: Well-posedness and maximal regularity","authors":"Pascal Auscher ,&nbsp;Pierre Portal","doi":"10.1016/j.jde.2024.11.038","DOIUrl":null,"url":null,"abstract":"<div><div>We establish well-posedness and maximal regularity estimates for linear parabolic SPDE in divergence form involving random coefficients that are merely bounded and measurable in the time, space, and probability variables. To reach this level of generality, and avoid any of the smoothness assumptions used in the literature, we introduce a notion of pathwise weak solution and develop a new harmonic analysis toolkit. The latter includes techniques to prove the boundedness of various maximal regularity operators on relevant spaces of square functions, the parabolic tent spaces <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>. Applied to deterministic parabolic PDE in divergence form with real coefficients, our results also give the first extension of Lions maximal regularity theorem on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>=</mo><msup><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> to <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>, for all <span><math><mn>1</mn><mo>−</mo><mi>ε</mi><mo>&lt;</mo><mi>p</mi><mo>≤</mo><mo>∞</mo></math></span> in this generality.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"420 ","pages":"Pages 1-51"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624007678","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We establish well-posedness and maximal regularity estimates for linear parabolic SPDE in divergence form involving random coefficients that are merely bounded and measurable in the time, space, and probability variables. To reach this level of generality, and avoid any of the smoothness assumptions used in the literature, we introduce a notion of pathwise weak solution and develop a new harmonic analysis toolkit. The latter includes techniques to prove the boundedness of various maximal regularity operators on relevant spaces of square functions, the parabolic tent spaces Tp. Applied to deterministic parabolic PDE in divergence form with real coefficients, our results also give the first extension of Lions maximal regularity theorem on L2(R+×Rn)=T2 to Tp, for all 1ε<p in this generality.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信