Bin Luo , Feng Li , Siyuan Wu , Kewei Shi , Yunxiao Ding , Rijing Zhao , Dong Huang , Wenxing Shi
{"title":"Experimental and numerical research on a C-type heat exchanger in duct air conditioner under non-uniform airflow","authors":"Bin Luo , Feng Li , Siyuan Wu , Kewei Shi , Yunxiao Ding , Rijing Zhao , Dong Huang , Wenxing Shi","doi":"10.1016/j.applthermaleng.2024.125097","DOIUrl":null,"url":null,"abstract":"<div><div>The indoor unit of duct air conditioner typically employs an A-type heat exchanger (HX), but non-uniform airflow within the duct significantly degrades heat transfer performance. The current study proposes a C-type HX to accommodate the non-uniform airflow better. Experiments are conducted to compare the C-type and A-type HXs under varying conditions, including air volume flow rate, air velocity non-uniformity, inlet air temperature, and condensing temperature. Results indicate that as the non-uniformity of inlet air velocity increases, the heat transfer capacity of A-type HX decreases obviously. In contrast, the C-type is insensitive to the non-uniform air velocity distribution, which consistently outperforms the A-type in terms of heat transfer capacity throughout various operating conditions. Additionally, a numerical model is developed to compare the local parameters of the two HX types. The C-type demonstrates a more uniform outlet air temperature and exhibits a heat transfer capacity that is 19.1% higher than the A-type, while maintaining the identical heat transfer area and size parameters.</div></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":"261 ","pages":"Article 125097"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359431124027650","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The indoor unit of duct air conditioner typically employs an A-type heat exchanger (HX), but non-uniform airflow within the duct significantly degrades heat transfer performance. The current study proposes a C-type HX to accommodate the non-uniform airflow better. Experiments are conducted to compare the C-type and A-type HXs under varying conditions, including air volume flow rate, air velocity non-uniformity, inlet air temperature, and condensing temperature. Results indicate that as the non-uniformity of inlet air velocity increases, the heat transfer capacity of A-type HX decreases obviously. In contrast, the C-type is insensitive to the non-uniform air velocity distribution, which consistently outperforms the A-type in terms of heat transfer capacity throughout various operating conditions. Additionally, a numerical model is developed to compare the local parameters of the two HX types. The C-type demonstrates a more uniform outlet air temperature and exhibits a heat transfer capacity that is 19.1% higher than the A-type, while maintaining the identical heat transfer area and size parameters.
期刊介绍:
Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application.
The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.