Experimental and numerical research on a C-type heat exchanger in duct air conditioner under non-uniform airflow

IF 6.1 2区 工程技术 Q2 ENERGY & FUELS
Bin Luo , Feng Li , Siyuan Wu , Kewei Shi , Yunxiao Ding , Rijing Zhao , Dong Huang , Wenxing Shi
{"title":"Experimental and numerical research on a C-type heat exchanger in duct air conditioner under non-uniform airflow","authors":"Bin Luo ,&nbsp;Feng Li ,&nbsp;Siyuan Wu ,&nbsp;Kewei Shi ,&nbsp;Yunxiao Ding ,&nbsp;Rijing Zhao ,&nbsp;Dong Huang ,&nbsp;Wenxing Shi","doi":"10.1016/j.applthermaleng.2024.125097","DOIUrl":null,"url":null,"abstract":"<div><div>The indoor unit of duct air conditioner typically employs an A-type heat exchanger (HX), but non-uniform airflow within the duct significantly degrades heat transfer performance. The current study proposes a C-type HX to accommodate the non-uniform airflow better. Experiments are conducted to compare the C-type and A-type HXs under varying conditions, including air volume flow rate, air velocity non-uniformity, inlet air temperature, and condensing temperature. Results indicate that as the non-uniformity of inlet air velocity increases, the heat transfer capacity of A-type HX decreases obviously. In contrast, the C-type is insensitive to the non-uniform air velocity distribution, which consistently outperforms the A-type in terms of heat transfer capacity throughout various operating conditions. Additionally, a numerical model is developed to compare the local parameters of the two HX types. The C-type demonstrates a more uniform outlet air temperature and exhibits a heat transfer capacity that is 19.1% higher than the A-type, while maintaining the identical heat transfer area and size parameters.</div></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":"261 ","pages":"Article 125097"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359431124027650","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The indoor unit of duct air conditioner typically employs an A-type heat exchanger (HX), but non-uniform airflow within the duct significantly degrades heat transfer performance. The current study proposes a C-type HX to accommodate the non-uniform airflow better. Experiments are conducted to compare the C-type and A-type HXs under varying conditions, including air volume flow rate, air velocity non-uniformity, inlet air temperature, and condensing temperature. Results indicate that as the non-uniformity of inlet air velocity increases, the heat transfer capacity of A-type HX decreases obviously. In contrast, the C-type is insensitive to the non-uniform air velocity distribution, which consistently outperforms the A-type in terms of heat transfer capacity throughout various operating conditions. Additionally, a numerical model is developed to compare the local parameters of the two HX types. The C-type demonstrates a more uniform outlet air temperature and exhibits a heat transfer capacity that is 19.1% higher than the A-type, while maintaining the identical heat transfer area and size parameters.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Thermal Engineering
Applied Thermal Engineering 工程技术-工程:机械
CiteScore
11.30
自引率
15.60%
发文量
1474
审稿时长
57 days
期刊介绍: Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application. The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信