Baochang Zhou , Weituo Sun , Wenzhong Guo , Wengang Zheng , Mei Qu
{"title":"Performance of a greenhouse heating system utilizing energy transfer between greenhouses based on the dual source heat pump","authors":"Baochang Zhou , Weituo Sun , Wenzhong Guo , Wengang Zheng , Mei Qu","doi":"10.1016/j.applthermaleng.2024.125088","DOIUrl":null,"url":null,"abstract":"<div><div>High energy consumption challenges the multi-span greenhouse industry in China. To address this, a greenhouse heating system utilizing energy transfer between greenhouses based on the dual source heat pump (ETGHP) was designed in our previous research. However, its performance in practical application remains largely unexplored. This study conducted a field test to comprehensively assess this system. Results showed stable heating effects, and the heat collection of the system in Chinese solar greenhouse (CSG) air source heating mode accounted for 2.1% to 28.2% of the total, validating the feasibility of energy transfer between greenhouses. The use of CSG air source increased heating capacity by 27% and coefficient of performance (COP) by 23% for air source heat pumps. Then the dual source configuration achieved a 10.8% increase in heat collection and a 7.9% improvement in COP compared with the single air source. During the test, the COP of the system achieved 2.8 during heat collection and 2.5 for heating the multi-span greenhouse. Outdoor weather, greenhouse structures and management were found to influence system operation. This study also conducted performance comparation and explored the economic and environmental benefits for the system, proving it to be an efficient solution for multi-span greenhouse heating.</div></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":"261 ","pages":"Article 125088"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S135943112402756X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
High energy consumption challenges the multi-span greenhouse industry in China. To address this, a greenhouse heating system utilizing energy transfer between greenhouses based on the dual source heat pump (ETGHP) was designed in our previous research. However, its performance in practical application remains largely unexplored. This study conducted a field test to comprehensively assess this system. Results showed stable heating effects, and the heat collection of the system in Chinese solar greenhouse (CSG) air source heating mode accounted for 2.1% to 28.2% of the total, validating the feasibility of energy transfer between greenhouses. The use of CSG air source increased heating capacity by 27% and coefficient of performance (COP) by 23% for air source heat pumps. Then the dual source configuration achieved a 10.8% increase in heat collection and a 7.9% improvement in COP compared with the single air source. During the test, the COP of the system achieved 2.8 during heat collection and 2.5 for heating the multi-span greenhouse. Outdoor weather, greenhouse structures and management were found to influence system operation. This study also conducted performance comparation and explored the economic and environmental benefits for the system, proving it to be an efficient solution for multi-span greenhouse heating.
期刊介绍:
Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application.
The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.