Mengyue Hu , Chao Xiao , Xiaofei Li , Xiaoshuan Pan , Xian Zhang , Xianglan Liu , Xin Ding , Meng Xue , Xingyou Tian , Kang Zheng
{"title":"Breathable sandwich laminates with dynamic infrared camouflage for all-weather scenarios","authors":"Mengyue Hu , Chao Xiao , Xiaofei Li , Xiaoshuan Pan , Xian Zhang , Xianglan Liu , Xin Ding , Meng Xue , Xingyou Tian , Kang Zheng","doi":"10.1016/j.compositesb.2024.112014","DOIUrl":null,"url":null,"abstract":"<div><div>Infrared stealth technology played an important role in military, aerospace and other fields. However, it was currently a great challenge for all-weather infrared camouflage as well as infrared camouflage for military breathable clothing. In this paper, a three-layer structured polyimide film was prepared by laser etching and vacuum evaporation, which could be used for infrared camouflage in low and high temperature environments. The film had impressive waterproof and breathable properties. The main body of the film consisted of microporous polyimide (PIF). Forest-like vertical graphene arrays were constructed on the dense side of the PIF by adjusting the laser parameters. A layer of gold was then coated on the other side of the PIF to provide low emissivity properties. This three-layer structured composite film allowed the target to exhibit infrared radiation properties like the ambient background at both high and low temperatures. Waterproof and breathable properties could be applied to military infrared camouflage clothing fabrics. This work provided a promising solution strategy for the development of functional composite films in new military equipment.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"291 ","pages":"Article 112014"},"PeriodicalIF":12.7000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836824008278","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Infrared stealth technology played an important role in military, aerospace and other fields. However, it was currently a great challenge for all-weather infrared camouflage as well as infrared camouflage for military breathable clothing. In this paper, a three-layer structured polyimide film was prepared by laser etching and vacuum evaporation, which could be used for infrared camouflage in low and high temperature environments. The film had impressive waterproof and breathable properties. The main body of the film consisted of microporous polyimide (PIF). Forest-like vertical graphene arrays were constructed on the dense side of the PIF by adjusting the laser parameters. A layer of gold was then coated on the other side of the PIF to provide low emissivity properties. This three-layer structured composite film allowed the target to exhibit infrared radiation properties like the ambient background at both high and low temperatures. Waterproof and breathable properties could be applied to military infrared camouflage clothing fabrics. This work provided a promising solution strategy for the development of functional composite films in new military equipment.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.