Effect of laser surface treatment on microstructural evolution and mechanical properties of a Co–Cr–Fe–Ni–Mo medium–entropy alloy

IF 6.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Chan Woo Jung , Jae Hyuk Lee , Soo-Hyun Joo , Rae Eon Kim , Hyoung Seop Kim , Jongun Moon
{"title":"Effect of laser surface treatment on microstructural evolution and mechanical properties of a Co–Cr–Fe–Ni–Mo medium–entropy alloy","authors":"Chan Woo Jung ,&nbsp;Jae Hyuk Lee ,&nbsp;Soo-Hyun Joo ,&nbsp;Rae Eon Kim ,&nbsp;Hyoung Seop Kim ,&nbsp;Jongun Moon","doi":"10.1016/j.msea.2024.147617","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we explored the influence of laser surface treatment on the microstructural evolution and mechanical properties of a Co<sub>17.5</sub>Cr<sub>12.5</sub>Fe<sub>55</sub>Ni<sub>10</sub>Mo<sub>5</sub> medium-entropy alloy. After laser scanning on the cold-rolled alloy, a heterogeneous microstructure with Mo-rich μ-precipitates formed along the depth from the surface. Notably, laser processing parameters, including scanning speed and the number of scans, affected the macroscopic heterogeneity in the microstructure of the alloy, such as the thickness of the columnar, recrystallized, partially-recrystallized, and non-recrystallized layers. Furthermore, the microstructural features of the laser-treated alloys with a heterogeneous distribution of grains, cellular structures, and precipitates, contributed to the mechanical response of the alloys. As the heat input from the laser heat source increases, the grain coarsening and the absence of non-recrystallized layer have a greater impact on the strength of the laser-treated alloys, even if the precipitates distributed deeper from the surface. These microstructural modifications through laser surface treatment are linked to variations in the mechanical performance of the alloys, indicating that it can be an effective method to tailor the mechanical properties of structural materials.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"922 ","pages":"Article 147617"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092150932401548X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we explored the influence of laser surface treatment on the microstructural evolution and mechanical properties of a Co17.5Cr12.5Fe55Ni10Mo5 medium-entropy alloy. After laser scanning on the cold-rolled alloy, a heterogeneous microstructure with Mo-rich μ-precipitates formed along the depth from the surface. Notably, laser processing parameters, including scanning speed and the number of scans, affected the macroscopic heterogeneity in the microstructure of the alloy, such as the thickness of the columnar, recrystallized, partially-recrystallized, and non-recrystallized layers. Furthermore, the microstructural features of the laser-treated alloys with a heterogeneous distribution of grains, cellular structures, and precipitates, contributed to the mechanical response of the alloys. As the heat input from the laser heat source increases, the grain coarsening and the absence of non-recrystallized layer have a greater impact on the strength of the laser-treated alloys, even if the precipitates distributed deeper from the surface. These microstructural modifications through laser surface treatment are linked to variations in the mechanical performance of the alloys, indicating that it can be an effective method to tailor the mechanical properties of structural materials.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Engineering: A
Materials Science and Engineering: A 工程技术-材料科学:综合
CiteScore
11.50
自引率
15.60%
发文量
1811
审稿时长
31 days
期刊介绍: Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信