Amorphous CuSbOx composite-catalyzed electrocatalytic reduction of CO2 to CO: CO2 demand-supply-regulated performance

IF 19.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chem Pub Date : 2024-12-02 DOI:10.1016/j.chempr.2024.10.029
Huai Qin Fu, Tingting Yu, Jessica White, Ji Wei Sun, Yuming Wu, Wen Jing Li, Nicholas M. Bedford, Yun Wang, Thomas E. Rufford, Cheng Lian, Porun Liu, Hua Gui Yang, Huijun Zhao
{"title":"Amorphous CuSbOx composite-catalyzed electrocatalytic reduction of CO2 to CO: CO2 demand-supply-regulated performance","authors":"Huai Qin Fu, Tingting Yu, Jessica White, Ji Wei Sun, Yuming Wu, Wen Jing Li, Nicholas M. Bedford, Yun Wang, Thomas E. Rufford, Cheng Lian, Porun Liu, Hua Gui Yang, Huijun Zhao","doi":"10.1016/j.chempr.2024.10.029","DOIUrl":null,"url":null,"abstract":"The path to practical production of targeted chemicals and fuels application via carbon dioxide reduction reactions (CO<sub>2</sub>RRs) remains a significant challenge mainly due to low CO<sub>2</sub> solubility. Aiming to tackle this key issue, herein, we used the CuSbO<sub>x</sub> cathode-catalyzed reduction of CO<sub>2</sub> to CO as a model system to quantitatively depict CO<sub>2</sub> demand-supply and performance relationships. We propose a cathode/electrolyte interface model consisting of a porous catalyst layer, and we combined the experimental and computational COMSOL Multiphysics finite-element studies to quantitatively unveil CO<sub>2</sub> demand-supply relationships and determine the maximum CO<sub>2</sub> supply capacity in both stationary H cell and gas diffusion electrode (GDE) flow cell. This work exemplifies that experimentally measured catalytic performance may not accurately reflect the maximum capacity/intrinsic electrocatalytic activity of electrocatalysts and reveals that CO<sub>2</sub> supply capacity in the GDE flow cell can be dramatically affected by the thickness of the liquid layer between the hydrophobic gas diffusion layer and the catalyst layer.","PeriodicalId":268,"journal":{"name":"Chem","volume":"3 1","pages":""},"PeriodicalIF":19.1000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.chempr.2024.10.029","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The path to practical production of targeted chemicals and fuels application via carbon dioxide reduction reactions (CO2RRs) remains a significant challenge mainly due to low CO2 solubility. Aiming to tackle this key issue, herein, we used the CuSbOx cathode-catalyzed reduction of CO2 to CO as a model system to quantitatively depict CO2 demand-supply and performance relationships. We propose a cathode/electrolyte interface model consisting of a porous catalyst layer, and we combined the experimental and computational COMSOL Multiphysics finite-element studies to quantitatively unveil CO2 demand-supply relationships and determine the maximum CO2 supply capacity in both stationary H cell and gas diffusion electrode (GDE) flow cell. This work exemplifies that experimentally measured catalytic performance may not accurately reflect the maximum capacity/intrinsic electrocatalytic activity of electrocatalysts and reveals that CO2 supply capacity in the GDE flow cell can be dramatically affected by the thickness of the liquid layer between the hydrophobic gas diffusion layer and the catalyst layer.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chem
Chem Environmental Science-Environmental Chemistry
CiteScore
32.40
自引率
1.30%
发文量
281
期刊介绍: Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信