Manipulating Interlayer Carrier Relaxation Dynamics in Type-II Heterostructures of 2D Hybrid Perovskites Through Organic Spacer Engineering

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Bin Han, Qi Qiu, Yanren Tang, Bingtao Lian, Bo Liu, Shukai Ding, Shufang Ma, Min Luo, Wei Wang, Bingshe Xu, Hsien-Yi Hsu
{"title":"Manipulating Interlayer Carrier Relaxation Dynamics in Type-II Heterostructures of 2D Hybrid Perovskites Through Organic Spacer Engineering","authors":"Bin Han,&nbsp;Qi Qiu,&nbsp;Yanren Tang,&nbsp;Bingtao Lian,&nbsp;Bo Liu,&nbsp;Shukai Ding,&nbsp;Shufang Ma,&nbsp;Min Luo,&nbsp;Wei Wang,&nbsp;Bingshe Xu,&nbsp;Hsien-Yi Hsu","doi":"10.1002/adfm.202417167","DOIUrl":null,"url":null,"abstract":"<p>Type-II heterostructures are crucial components in optoelectronic devices such as photovoltaics and photodetectors. Previous studies have shown that interlayer charge transfer (CT) is the dominant carrier relaxation mechanism in type-II heterostructures of 2D materials. In this study, it is demonstrated that in type-II heterostructures composed of 2D organic–inorganic hybrid perovskites (OIHPs), the conventional CT process can transition to an energy transfer (ET) process without requiring an additional charge-blocking interlayer. The results indicate that CT predominates in heterostructures in which both layers have the same organic spacer, particularly in BA<sub>2</sub>PbI<sub>4</sub>/BA<sub>2</sub>MA<sub>2</sub>Pb<sub>3</sub>I<sub>10</sub>. Notably, when the organic spacer BA is replaced with PEA in one layer of the heterostructure, that is BA<sub>2</sub>PbI<sub>4</sub>/PEA<sub>2</sub>MA<sub>2</sub>Pb<sub>3</sub>I<sub>10</sub>, the carrier relaxation process shifts from CT to ET. Although both BA<sub>2</sub>PbI<sub>4</sub>/BA<sub>2</sub>MA<sub>2</sub>Pb<sub>3</sub>I<sub>10</sub> and BA<sub>2</sub>PbI<sub>4</sub>/PEA<sub>2</sub>MA<sub>2</sub>Pb<sub>3</sub>I<sub>10</sub> exhibit type-II band alignment, density functional theory calculations reveal that the substitution of BA with PEA creates a novel type-II band alignment. This new alignment inhibits electron and hole separation, thereby favoring ET over CT. This study not only provides significant insight into the interlayer carrier relaxation dynamics but also is crucial for the future deterministic design of 2D OIHPs heterostructure-based optoelectronic devices.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 11","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202417167","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Type-II heterostructures are crucial components in optoelectronic devices such as photovoltaics and photodetectors. Previous studies have shown that interlayer charge transfer (CT) is the dominant carrier relaxation mechanism in type-II heterostructures of 2D materials. In this study, it is demonstrated that in type-II heterostructures composed of 2D organic–inorganic hybrid perovskites (OIHPs), the conventional CT process can transition to an energy transfer (ET) process without requiring an additional charge-blocking interlayer. The results indicate that CT predominates in heterostructures in which both layers have the same organic spacer, particularly in BA2PbI4/BA2MA2Pb3I10. Notably, when the organic spacer BA is replaced with PEA in one layer of the heterostructure, that is BA2PbI4/PEA2MA2Pb3I10, the carrier relaxation process shifts from CT to ET. Although both BA2PbI4/BA2MA2Pb3I10 and BA2PbI4/PEA2MA2Pb3I10 exhibit type-II band alignment, density functional theory calculations reveal that the substitution of BA with PEA creates a novel type-II band alignment. This new alignment inhibits electron and hole separation, thereby favoring ET over CT. This study not only provides significant insight into the interlayer carrier relaxation dynamics but also is crucial for the future deterministic design of 2D OIHPs heterostructure-based optoelectronic devices.

Abstract Image

Abstract Image

利用有机间隔剂工程控制二维杂化钙钛矿ii型异质结构层间载流子弛豫动力学
ii型异质结构是光电器件的重要组成部分,如光伏和光电探测器。以往的研究表明,层间电荷转移(CT)是二维材料ii型异质结构中主要的载流子弛豫机制。本研究表明,在由二维有机-无机杂化钙钛矿(OIHPs)组成的ii型异质结构中,传统的CT过程可以过渡到能量转移(ET)过程,而无需额外的电荷阻挡中间层。结果表明,CT在两层具有相同有机间隔的异质结构中占主导地位,特别是在BA2PbI4/BA2MA2Pb3I10中。值得注意的是,当BA2PbI4/PEA2MA2Pb3I10异质结构中的有机间隔剂BA被PEA取代时,载子弛豫过程从CT转变为ET。尽管BA2PbI4/BA2MA2Pb3I10和BA2PbI4/PEA2MA2Pb3I10都表现出ii型带取向,但密度泛函理论计算表明,BA被PEA取代产生了一种新的ii型带取向。这种新的排列抑制了电子和空穴的分离,从而有利于ET而不是CT。该研究不仅为层间载流子弛豫动力学提供了重要的见解,而且对未来二维OIHPs异质结构光电器件的确定性设计至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信