Huixin Wu, Hai Wang, Yating Lv, Yuexin Wu, Yike Wang, Qingsong Luo, Yu Hui, Lujie Liu, Mengting Zhang, Kunming Hou, Prof. Lina Li, Jianrong Zeng, Prof. Weili Dai, Prof. Liang Wang, Prof. Feng-Shou Xiao
{"title":"Ultra-small Metallic Nickel Nanoparticles on Dealuminated Zeolite for Active and Durable Catalytic Dehydrogenation","authors":"Huixin Wu, Hai Wang, Yating Lv, Yuexin Wu, Yike Wang, Qingsong Luo, Yu Hui, Lujie Liu, Mengting Zhang, Kunming Hou, Prof. Lina Li, Jianrong Zeng, Prof. Weili Dai, Prof. Liang Wang, Prof. Feng-Shou Xiao","doi":"10.1002/anie.202420306","DOIUrl":null,"url":null,"abstract":"<p>Each step in the catalyst synthesis process plays an important role in tuning the catalyst structures. For zeolite-supported nickel catalysts, we found the conventional calcination-reduction method typically leads to the formation of large nickel particles, but a pre-aging in hydrogen or nitrogen at a low temperature prior to final reduction can result in ultra-small nickel nanoparticles in a metallic state. This pre-aging treatment facilitates the interaction between Ni<sup>2+</sup> cations and silanol nests on zeolite before the decomposition of the metal salt, leading to the formation of nanoparticles with an average diameter of ~1.2 nm. In contrast, the pre-calcination in oxygen caused the Ni<sup>2+</sup> aggregation before the decomposition of the metal salt precursor, yielding nickel nanoparticles larger than 5 nm. Given the structure sensitivity of nickel in cyclohexane dehydrogenation for hydrogen production, the ultra-small nickel nanoparticles exhibited significantly enhanced activity and durability compared to previous nickel catalysts.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 8","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202420306","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Each step in the catalyst synthesis process plays an important role in tuning the catalyst structures. For zeolite-supported nickel catalysts, we found the conventional calcination-reduction method typically leads to the formation of large nickel particles, but a pre-aging in hydrogen or nitrogen at a low temperature prior to final reduction can result in ultra-small nickel nanoparticles in a metallic state. This pre-aging treatment facilitates the interaction between Ni2+ cations and silanol nests on zeolite before the decomposition of the metal salt, leading to the formation of nanoparticles with an average diameter of ~1.2 nm. In contrast, the pre-calcination in oxygen caused the Ni2+ aggregation before the decomposition of the metal salt precursor, yielding nickel nanoparticles larger than 5 nm. Given the structure sensitivity of nickel in cyclohexane dehydrogenation for hydrogen production, the ultra-small nickel nanoparticles exhibited significantly enhanced activity and durability compared to previous nickel catalysts.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.