Dr. Yue Zhou, Dr. Dong Chen, Dr. Wanmiao Gu, Dr. Wentao Fan, Dr. Runguo Wang, Dr. Liang Fang, Dr. Qing You, Dr. Shengli Zhuang, Guoqing Bian, Dr. Lingwen Liao, Ziyan Zhou, Dr. Nan Xia, Prof. Dr. Jun Yang, Prof. Dr. Zhikun Wu
{"title":"Chemical Synthesis of ~1 nm Multilevel Capacitor-like Particles with Atomic Precision","authors":"Dr. Yue Zhou, Dr. Dong Chen, Dr. Wanmiao Gu, Dr. Wentao Fan, Dr. Runguo Wang, Dr. Liang Fang, Dr. Qing You, Dr. Shengli Zhuang, Guoqing Bian, Dr. Lingwen Liao, Ziyan Zhou, Dr. Nan Xia, Prof. Dr. Jun Yang, Prof. Dr. Zhikun Wu","doi":"10.1002/anie.202420931","DOIUrl":null,"url":null,"abstract":"<p>Can the chemically synthesized nanoparticles act as nanodevices or nanomachines? Herein, we demonstrated this feasibility. A novel nanocluster (ultrasmall nanoparticle) [Au<sub>44</sub>Cd<sub>20</sub>(<i>m</i>-MBT)<sub>40</sub>][N(C<sub>8</sub>H<sub>17</sub>)<sub>4</sub>]<sub>2</sub> (Au<sub>44</sub>Cd<sub>20</sub> in short, <i>m</i>-MBTH: <i>m</i>-methylbenzenethiol) obtained via developing a synthesis method has a cannula-like structure of the outer shell and an internal sleeve, revealed by single-crystal X-ray diffraction. Natural population analysis (NPA) charge calculations, charge carrier transport of Au<sub>44</sub>Cd<sub>20</sub> (during which an intra-nanocluster anti-galvanic reaction was observed) after unneutral charging using NaBH<sub>4</sub> as well as voltammetry proved the capacitor-like character of Au<sub>44</sub>Cd<sub>20</sub>. The subsidiary capacitor-like character of the outer shell of Au<sub>44</sub>Cd<sub>20</sub> was further probed via NPA charge calculations and electrocatalytic reduction of CO<sub>2</sub> to CO. Thus, this study predicts a new era of engineering metal nanoparticles for realizing atomically precise ultrasmall nanodevices and nanomachines.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 8","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202420931","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Can the chemically synthesized nanoparticles act as nanodevices or nanomachines? Herein, we demonstrated this feasibility. A novel nanocluster (ultrasmall nanoparticle) [Au44Cd20(m-MBT)40][N(C8H17)4]2 (Au44Cd20 in short, m-MBTH: m-methylbenzenethiol) obtained via developing a synthesis method has a cannula-like structure of the outer shell and an internal sleeve, revealed by single-crystal X-ray diffraction. Natural population analysis (NPA) charge calculations, charge carrier transport of Au44Cd20 (during which an intra-nanocluster anti-galvanic reaction was observed) after unneutral charging using NaBH4 as well as voltammetry proved the capacitor-like character of Au44Cd20. The subsidiary capacitor-like character of the outer shell of Au44Cd20 was further probed via NPA charge calculations and electrocatalytic reduction of CO2 to CO. Thus, this study predicts a new era of engineering metal nanoparticles for realizing atomically precise ultrasmall nanodevices and nanomachines.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.