Stacking selected polarization switching and phase transition in vdW ferroelectric α-In2Se3 junction devices

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yuyang Wu, Tianjiao Zhang, Deping Guo, Bicheng Li, Ke Pei, Wenbin You, Yiqian Du, Wanchen Xing, Yuxiang Lai, Wei Ji, Yuda Zhao, Renchao Che
{"title":"Stacking selected polarization switching and phase transition in vdW ferroelectric α-In2Se3 junction devices","authors":"Yuyang Wu, Tianjiao Zhang, Deping Guo, Bicheng Li, Ke Pei, Wenbin You, Yiqian Du, Wanchen Xing, Yuxiang Lai, Wei Ji, Yuda Zhao, Renchao Che","doi":"10.1038/s41467-024-54841-7","DOIUrl":null,"url":null,"abstract":"<p>The structure and dynamics of ferroelectric domain walls are essential for polarization switching in ferroelectrics, which remains relatively unexplored in two-dimensional ferroelectric α-In<sub>2</sub>Se<sub>3</sub>. Interlayer interactions engineering via selecting the stacking order in two-dimensional materials allows modulation of ferroelectric properties. Here, we report stacking-dependent ferroelectric domain walls in 2H and 3R stacked α-In<sub>2</sub>Se<sub>3</sub>, elucidating the resistance switching mechanism in ferroelectric semiconductor-metal junction devices. In 3R α-In<sub>2</sub>Se<sub>3</sub>, the in-plane movement of out-of-plane ferroelectric domain walls yield a large hysteresis window. Conversely, 2H α-In<sub>2</sub>Se<sub>3</sub> devices favor in-plane domain walls and out-of-plane domain wall motion, producing a small hysteresis window. High electric fields induce a ferro-paraelectric phase transition of In<sub>2</sub>Se<sub>3</sub>, where 3R In<sub>2</sub>Se<sub>3</sub> reaches the transition through intralayer atomic gliding, while 2H In<sub>2</sub>Se<sub>3</sub> undergoes a complex process comprising intralayer bond dissociation and interlayer bond reconstruction. Our findings demonstrate tunable ferroelectric properties via stacking configurations, offering an expanded dimension for material engineering in ferroelectric devices.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"12 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54841-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The structure and dynamics of ferroelectric domain walls are essential for polarization switching in ferroelectrics, which remains relatively unexplored in two-dimensional ferroelectric α-In2Se3. Interlayer interactions engineering via selecting the stacking order in two-dimensional materials allows modulation of ferroelectric properties. Here, we report stacking-dependent ferroelectric domain walls in 2H and 3R stacked α-In2Se3, elucidating the resistance switching mechanism in ferroelectric semiconductor-metal junction devices. In 3R α-In2Se3, the in-plane movement of out-of-plane ferroelectric domain walls yield a large hysteresis window. Conversely, 2H α-In2Se3 devices favor in-plane domain walls and out-of-plane domain wall motion, producing a small hysteresis window. High electric fields induce a ferro-paraelectric phase transition of In2Se3, where 3R In2Se3 reaches the transition through intralayer atomic gliding, while 2H In2Se3 undergoes a complex process comprising intralayer bond dissociation and interlayer bond reconstruction. Our findings demonstrate tunable ferroelectric properties via stacking configurations, offering an expanded dimension for material engineering in ferroelectric devices.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信