Controlling chemical interface damping by removing aromatic monothiol and dithiol groups from gold nanorods using sodium borohydride solution†

IF 3.6 3区 化学 Q2 CHEMISTRY, ANALYTICAL
Analyst Pub Date : 2024-12-02 DOI:10.1039/D4AN01187B
Ji Min Kim and Ji Won Ha
{"title":"Controlling chemical interface damping by removing aromatic monothiol and dithiol groups from gold nanorods using sodium borohydride solution†","authors":"Ji Min Kim and Ji Won Ha","doi":"10.1039/D4AN01187B","DOIUrl":null,"url":null,"abstract":"<p >Chemical interface damping (CID) in gold nanorods (AuNRs) significantly influences their optical properties due to the direct transfer of hot electrons from the AuNRs to adsorbed molecules. Despite ongoing research on CID, reversible tuning of CID at the single particle level remains a challenging task. In this study, we investigated the adsorption and removal of thiol-functionalized aromatic molecules, specifically thiophenol (TP) and benzene-1,2-dithiol (BDT), using sodium borohydride (NaBH<small><sub>4</sub></small>) solution as a reagent, with confirmation through surface-enhanced Raman scattering (SERS) measurements. We further examined the effect of NaBH<small><sub>4</sub></small> solution pH, immersion time in solution, and the number of thiol groups in the adsorbate (TP and BDT) on removal efficiency from the AuNR surfaces. Additionally, we extended this approach to directly control CID in single AuNRs <em>via</em> the adsorption and desorption of TP and BDT molecules under dark-field microscopy and spectroscopy. Therefore, this study provides insights into the removal of aromatic thiol molecules using NaBH<small><sub>4</sub></small>, as well as the direct control of CID in individual AuNRs.</p>","PeriodicalId":63,"journal":{"name":"Analyst","volume":" 1","pages":" 55-59"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analyst","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/an/d4an01187b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Chemical interface damping (CID) in gold nanorods (AuNRs) significantly influences their optical properties due to the direct transfer of hot electrons from the AuNRs to adsorbed molecules. Despite ongoing research on CID, reversible tuning of CID at the single particle level remains a challenging task. In this study, we investigated the adsorption and removal of thiol-functionalized aromatic molecules, specifically thiophenol (TP) and benzene-1,2-dithiol (BDT), using sodium borohydride (NaBH4) solution as a reagent, with confirmation through surface-enhanced Raman scattering (SERS) measurements. We further examined the effect of NaBH4 solution pH, immersion time in solution, and the number of thiol groups in the adsorbate (TP and BDT) on removal efficiency from the AuNR surfaces. Additionally, we extended this approach to directly control CID in single AuNRs via the adsorption and desorption of TP and BDT molecules under dark-field microscopy and spectroscopy. Therefore, this study provides insights into the removal of aromatic thiol molecules using NaBH4, as well as the direct control of CID in individual AuNRs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analyst
Analyst 化学-分析化学
CiteScore
7.80
自引率
4.80%
发文量
636
审稿时长
1.9 months
期刊介绍: "Analyst" journal is the home of premier fundamental discoveries, inventions and applications in the analytical and bioanalytical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信