Metal Ion-Mediated Supramolecular Nanotube Catalyst for Enantioselective Reactions

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Cong Gao, Dongying Li, Aiting Xie, Yanchao Lyu, Qingqing Sun, Jie Han, Rong Guo
{"title":"Metal Ion-Mediated Supramolecular Nanotube Catalyst for Enantioselective Reactions","authors":"Cong Gao, Dongying Li, Aiting Xie, Yanchao Lyu, Qingqing Sun, Jie Han, Rong Guo","doi":"10.1021/acs.langmuir.4c04060","DOIUrl":null,"url":null,"abstract":"Rational control over the morphologies of supramolecular assemblies for asymmetric catalysis with enhanced enantioselectivity represents a pivotal challenge in the realm of synthetic chemistry and material technology. Herein, Cu(II) ion-mediated supramolecular nanostructures assembled from chiral amino acid-based amphiphiles (<span>l</span>/<span>d</span>-AlaC<sub>16</sub>) are fabricated as chiral catalysts for Diels–Alder cycloaddition between aza-chalcone and cyclopentadiene. In particular, compared with the supramolecular nanosheet formed by <span>l</span>/<span>d</span>-AlaC<sub>16</sub> without Cu(II) ions, we found that the <span>l</span>/<span>d</span>-alanine chiral amphiphile can form supramolecular nanotubes with a multilayer structure and with the thickness of the tubular wall about 15 nm through the transition from a nanoribbon to tubular structure in the presence of Cu(II) ions. Consequently, the catalytic enantioselectivity of Diels–Alder was improved from 6% (nanosheet) to 49% (nanotube), attributed to the curved surface of the nanotube structure, which provides a preferential chiral environment and high density of the catalytic center to favor the chirality transfer. Our study presented in this work offers valuable insights for designing chiral supramolecular catalysts with a higher enantioselectivity driven by a metal ions-mediated nanostructure.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"204 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c04060","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Rational control over the morphologies of supramolecular assemblies for asymmetric catalysis with enhanced enantioselectivity represents a pivotal challenge in the realm of synthetic chemistry and material technology. Herein, Cu(II) ion-mediated supramolecular nanostructures assembled from chiral amino acid-based amphiphiles (l/d-AlaC16) are fabricated as chiral catalysts for Diels–Alder cycloaddition between aza-chalcone and cyclopentadiene. In particular, compared with the supramolecular nanosheet formed by l/d-AlaC16 without Cu(II) ions, we found that the l/d-alanine chiral amphiphile can form supramolecular nanotubes with a multilayer structure and with the thickness of the tubular wall about 15 nm through the transition from a nanoribbon to tubular structure in the presence of Cu(II) ions. Consequently, the catalytic enantioselectivity of Diels–Alder was improved from 6% (nanosheet) to 49% (nanotube), attributed to the curved surface of the nanotube structure, which provides a preferential chiral environment and high density of the catalytic center to favor the chirality transfer. Our study presented in this work offers valuable insights for designing chiral supramolecular catalysts with a higher enantioselectivity driven by a metal ions-mediated nanostructure.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信