All‐Carbon Piezoresistive Sensor: Enhanced Sensitivity and Wide Linear Range via Multiscale Design for Wearable Applications

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Qixuan Xiang, Guanjie Zhao, Tao Tang, Hao Zhang, Zhiyuan Liu, Xianglong Zhang, Yaping Zhao, Huijun Tan
{"title":"All‐Carbon Piezoresistive Sensor: Enhanced Sensitivity and Wide Linear Range via Multiscale Design for Wearable Applications","authors":"Qixuan Xiang, Guanjie Zhao, Tao Tang, Hao Zhang, Zhiyuan Liu, Xianglong Zhang, Yaping Zhao, Huijun Tan","doi":"10.1002/adfm.202418706","DOIUrl":null,"url":null,"abstract":"Piezoresistive sensors are indispensable in applications such as healthcare monitoring, artificial intelligence, and advanced communication systems. However, achieving wearable sensors that offer both high sensitivity and a wide linear range remains a significant challenge. Here, an all‐carbon piezoresistive sensor is presented, named, featuring high biocompatibility, chemical stability, environmental sustainability, and a straightforward fabrication process. This sensor, integrating a double‐sided pyramidal carbon aerogel (DPA) as the sensing layer, a silicone frame as the elastic support (ES), and superhydrophobic graphene‐coated nylon fabric as the breathable conductive substrate (BCS), was named as DPA‐ES@BCS. Finite element analysis confirms that the synergistic interaction between the DPA and silicone frame enhances the sensor's sensitivity while extending its linear range. This multiscale design achieves an exceptional sensitivity of 37.3 kPa<jats:sup>−1</jats:sup>, a broad linear detection ranges from 0 to 1.4 MPa, and outstanding stability over 30 000 cycles. Additionally, the high‐performance wearable sensor is well‐suited for real‐time physiological signal monitoring and demonstrates exceptional capability in voice recognition, accurately distinguishing words using machine learning algorithms. Moreover, the DPA‐ES@BCS sensor array shows great potential for enhancing information security through dual‐factor authentication. This approach not only advances the piezoresistive performance of all‐carbon sensors but also provides a strong foundation for developing next‐generation sensor technologies.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"12 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202418706","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Piezoresistive sensors are indispensable in applications such as healthcare monitoring, artificial intelligence, and advanced communication systems. However, achieving wearable sensors that offer both high sensitivity and a wide linear range remains a significant challenge. Here, an all‐carbon piezoresistive sensor is presented, named, featuring high biocompatibility, chemical stability, environmental sustainability, and a straightforward fabrication process. This sensor, integrating a double‐sided pyramidal carbon aerogel (DPA) as the sensing layer, a silicone frame as the elastic support (ES), and superhydrophobic graphene‐coated nylon fabric as the breathable conductive substrate (BCS), was named as DPA‐ES@BCS. Finite element analysis confirms that the synergistic interaction between the DPA and silicone frame enhances the sensor's sensitivity while extending its linear range. This multiscale design achieves an exceptional sensitivity of 37.3 kPa−1, a broad linear detection ranges from 0 to 1.4 MPa, and outstanding stability over 30 000 cycles. Additionally, the high‐performance wearable sensor is well‐suited for real‐time physiological signal monitoring and demonstrates exceptional capability in voice recognition, accurately distinguishing words using machine learning algorithms. Moreover, the DPA‐ES@BCS sensor array shows great potential for enhancing information security through dual‐factor authentication. This approach not only advances the piezoresistive performance of all‐carbon sensors but also provides a strong foundation for developing next‐generation sensor technologies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信