Crystal OH mediating pathway for hydrogen peroxide production via two-electron water oxidation in non-carbonate electrolytes

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Ruilin Wang, Hao Luo, Chengyu Duan, Huimin Liu, Mengdi Sun, Quan Zhou, Zheshun Ou, Yinglong Lu, Guanghui Luo, Jimmy C. Yu, Zhuofeng Hu
{"title":"Crystal OH mediating pathway for hydrogen peroxide production via two-electron water oxidation in non-carbonate electrolytes","authors":"Ruilin Wang, Hao Luo, Chengyu Duan, Huimin Liu, Mengdi Sun, Quan Zhou, Zheshun Ou, Yinglong Lu, Guanghui Luo, Jimmy C. Yu, Zhuofeng Hu","doi":"10.1038/s41467-024-54593-4","DOIUrl":null,"url":null,"abstract":"<p>Water oxidation presents a promising avenue for hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) production. However, the reliance on alkaline bicarbonate electrolytes as an intermediate has limitations, such as H<sub>2</sub>O<sub>2</sub> decomposition and a narrow pH effectiveness range (7–9), restricting its utility across wider pH ranges. This study unveils a crystal OH mediating pathway that stabilizes SO<sub>4</sub>OH* as a crucial intermediate. Basic copper carbonate (Cu<sub>2</sub>(OH)<sub>2</sub>CO<sub>3</sub>) tablets, commonly found on cultural relics, exhibit the capability to generate H<sub>2</sub>O<sub>2</sub> in neutral or acidic non-bicarbonate electrolytes. By leveraging this crystal OH mediating strategy, considerable H<sub>2</sub>O<sub>2</sub> production in Na<sub>2</sub>SO<sub>4</sub> electrolytes is achievable. Notably, the H<sub>2</sub>O<sub>2</sub> production rate can reach 64.35 μmol h<sup>−1</sup> at 3.4 V vs. RHE in a 50 mL 0.5 M Na<sub>2</sub>SO<sub>4</sub> electrolyte. This research underscores the importance of crystal part in catalyst in catalyzing the 2e<sup>−</sup> water oxidation reaction, offering valuable insights for future investigations.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"44 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54593-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Water oxidation presents a promising avenue for hydrogen peroxide (H2O2) production. However, the reliance on alkaline bicarbonate electrolytes as an intermediate has limitations, such as H2O2 decomposition and a narrow pH effectiveness range (7–9), restricting its utility across wider pH ranges. This study unveils a crystal OH mediating pathway that stabilizes SO4OH* as a crucial intermediate. Basic copper carbonate (Cu2(OH)2CO3) tablets, commonly found on cultural relics, exhibit the capability to generate H2O2 in neutral or acidic non-bicarbonate electrolytes. By leveraging this crystal OH mediating strategy, considerable H2O2 production in Na2SO4 electrolytes is achievable. Notably, the H2O2 production rate can reach 64.35 μmol h−1 at 3.4 V vs. RHE in a 50 mL 0.5 M Na2SO4 electrolyte. This research underscores the importance of crystal part in catalyst in catalyzing the 2e water oxidation reaction, offering valuable insights for future investigations.

Abstract Image

晶体OH介导非碳酸盐电解质中双电子水氧化生成过氧化氢的途径
水氧化是生产过氧化氢(H2O2)的一个很有前途的途径。然而,依赖碱性碳酸氢盐电解质作为中间体具有局限性,例如H2O2分解和狭窄的pH有效范围(7-9),限制了其在更宽的pH范围内的应用。本研究揭示了一种晶体OH介导途径,该途径稳定了SO4OH*作为关键中间体。在文物上常见的碱式碳酸铜(Cu2(OH)2CO3)片,在中性或酸性非碳酸氢盐电解质中表现出生成H2O2的能力。通过利用这种晶体OH介质策略,可以在Na2SO4电解质中产生大量的H2O2。在50 mL 0.5 M Na2SO4电解液中,在3.4 V比RHE条件下H2O2产率可达64.35 μmol h−1。本研究强调了催化剂中晶体部分在催化2e -水氧化反应中的重要性,为今后的研究提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
文献相关原料
公司名称
产品信息
阿拉丁
Na2SO4
阿拉丁
Na2HPO4
阿拉丁
NaH2PO4
阿拉丁
NaOH
阿拉丁
Na2SO4
阿拉丁
Na2HPO4
阿拉丁
NaH2PO4
阿拉丁
NaOH
阿拉丁
Na2SO4
阿拉丁
Na2HPO4
阿拉丁
NaH2PO4
阿拉丁
NaOH
阿拉丁
Na2SO4
阿拉丁
Na2HPO4
阿拉丁
NaH2PO4
阿拉丁
NaOH
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信