Two-Dimensional Catalysts: From Model to Reality

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mo Zhang, Zifeng Wang, Xin Bo, Rui Huang, Dehui Deng
{"title":"Two-Dimensional Catalysts: From Model to Reality","authors":"Mo Zhang,&nbsp;Zifeng Wang,&nbsp;Xin Bo,&nbsp;Rui Huang,&nbsp;Dehui Deng","doi":"10.1002/anie.202419661","DOIUrl":null,"url":null,"abstract":"<p>Two-dimensional (2D) materials have been utilized broadly in kinds of catalytic reactions due to their fully exposed active sites and special electronic structure. Compared with real catalysts, which are usually bulk or particle, 2D materials have more well-defined structures. With easily identified structure-modulated engineering, 2D materials become ideal models to figure out the catalytic structure-function relations, which is helpful for the precise design of catalysts. In this review, the unique function of 2D materials was summarized from model study to reality catalysis and application. It includes several typical 2D materials, such as graphene, transition metal dichalcogenides, metal, and metal (hydr)oxide materials. We introduced the structural characteristics of 2D materials and their advantages in model researches. It emphatically summarized how 2D materials serve as models to explore the structure-activity relationship by combining theoretical calculations and surface research. The opportunities of 2D materials and the challenges for fundamentals and applications they facing are also addressed. This review provides a reference for the design of catalyst structure and composition, and could inspire the realization of two-dimensional materials from model study to reality application in industry.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 5","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202419661","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional (2D) materials have been utilized broadly in kinds of catalytic reactions due to their fully exposed active sites and special electronic structure. Compared with real catalysts, which are usually bulk or particle, 2D materials have more well-defined structures. With easily identified structure-modulated engineering, 2D materials become ideal models to figure out the catalytic structure-function relations, which is helpful for the precise design of catalysts. In this review, the unique function of 2D materials was summarized from model study to reality catalysis and application. It includes several typical 2D materials, such as graphene, transition metal dichalcogenides, metal, and metal (hydr)oxide materials. We introduced the structural characteristics of 2D materials and their advantages in model researches. It emphatically summarized how 2D materials serve as models to explore the structure-activity relationship by combining theoretical calculations and surface research. The opportunities of 2D materials and the challenges for fundamentals and applications they facing are also addressed. This review provides a reference for the design of catalyst structure and composition, and could inspire the realization of two-dimensional materials from model study to reality application in industry.

Abstract Image

二维催化剂:从模型到现实
二维材料由于其充分暴露的活性位点和特殊的电子结构,在各种催化反应中得到了广泛的应用。与通常为块状或颗粒状的真实催化剂相比,二维材料具有更明确的结构。二维材料具有易于识别的结构-调制工程特性,是研究催化剂结构-功能关系的理想模型,有助于催化剂的精确设计。本文综述了二维材料从模型研究到现实催化和应用的独特功能。它包括几种典型的二维材料,如石墨烯、过渡金属二硫族化合物、金属和金属(水合)氧化物材料。介绍了二维材料的结构特点及其在模型研究中的优势。重点总结了二维材料如何通过理论计算和表面研究相结合来作为模型来探索结构-活性关系。还讨论了二维材料的机会以及它们面临的基础和应用的挑战。该综述为催化剂结构和组成的设计提供了参考,对实现二维材料从模型研究到实际工业应用具有一定的启发作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信