Electrical Dissipation Factor Measurements of Droplet Impact‐Derived Microgels with Different Topological Structures

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Lei Wang, Xuerong Ding, Yiheng Hu, Qiurui Li, Yibing Bian, Yefan Duan, Shujie Lu, Hongbin Han, Ning Gu, Jianfei Sun
{"title":"Electrical Dissipation Factor Measurements of Droplet Impact‐Derived Microgels with Different Topological Structures","authors":"Lei Wang, Xuerong Ding, Yiheng Hu, Qiurui Li, Yibing Bian, Yefan Duan, Shujie Lu, Hongbin Han, Ning Gu, Jianfei Sun","doi":"10.1002/adma.202413457","DOIUrl":null,"url":null,"abstract":"Topology, the study of properties that are invariant under continuous transformations, in which the number of pores (genus) is a profound concept that determines a number of properties that have been verified in many microscopic systems, but have not been studied in macroscopic materials. Microgels are widely used materials, and based on microfluidics, regular, stable, and reproducible microgels can be prepared, but studies from the perspective of topological principles have not been reported. In this paper, a system based on a boric acid ester rapid cross‐linking strategy that can rapidly capture topological changes during the transient process of droplet‐to‐ring transition is proposed. The electrical dissipation properties associated with different transient topologies during the process are also investigated, demonstrating that the change of topological structures in macroscopic materials also affected their electrical properties, laying the foundation for the design of modulated macroscopic micro structured materials based on topology theory.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"26 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202413457","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Topology, the study of properties that are invariant under continuous transformations, in which the number of pores (genus) is a profound concept that determines a number of properties that have been verified in many microscopic systems, but have not been studied in macroscopic materials. Microgels are widely used materials, and based on microfluidics, regular, stable, and reproducible microgels can be prepared, but studies from the perspective of topological principles have not been reported. In this paper, a system based on a boric acid ester rapid cross‐linking strategy that can rapidly capture topological changes during the transient process of droplet‐to‐ring transition is proposed. The electrical dissipation properties associated with different transient topologies during the process are also investigated, demonstrating that the change of topological structures in macroscopic materials also affected their electrical properties, laying the foundation for the design of modulated macroscopic micro structured materials based on topology theory.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信