Highly‐Buckled Nanofibrous Ceramic Aerogels with Ultra‐Large Stretchability and Tensile‐Insensitive Thermal Insulation

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shixuan Dang, Jingran Guo, Yuanpeng Deng, Hongxuan Yu, Han Zhao, Duola Wang, Yingde Zhao, Chuanyun Song, Jiali Chen, Minglei Ma, Wenshuai Chen, Xiang Xu
{"title":"Highly‐Buckled Nanofibrous Ceramic Aerogels with Ultra‐Large Stretchability and Tensile‐Insensitive Thermal Insulation","authors":"Shixuan Dang, Jingran Guo, Yuanpeng Deng, Hongxuan Yu, Han Zhao, Duola Wang, Yingde Zhao, Chuanyun Song, Jiali Chen, Minglei Ma, Wenshuai Chen, Xiang Xu","doi":"10.1002/adma.202415159","DOIUrl":null,"url":null,"abstract":"Ceramic aerogels have exhibited many superior characteristics with promising applications. As an attractive material system for thermal insulation under extreme conditions, ceramic aerogels are required to withstand complex thermomechanical stress to retain their super‐insulating properties but, they often suffer from severe fracture damage that can lead to catastrophic failure. Herein, inspired by the tendrils of Parthenocissus, we report a design and synthesis of ultra‐stretchable ceramic aerogels constructed by highly buckled nanofibers. The buckling of nanofibers is formed by asymmetric deformation through two‐component off‐axial electrospinning method. The resulting aerogels feature an ultra‐large stretchability with a tensile strain of up to 150% and high restorability with a tensile strain of up to 80%. They also display a near‐zero Poisson's ratio (4.3 × 10<jats:sup>−2</jats:sup>) and a near‐zero thermal expansion coefficient (2.6 × 10<jats:sup>−7</jats:sup> per °C), resulting in excellent thermomechanical stability. Benefiting from this ultra‐stretchability, the aerogels exhibit a unique tensile‐insensitive thermal insulation performance with thermal conductivities remaining only ≈106.7 mW m<jats:sup>−1</jats:sup> K<jats:sup>−1</jats:sup> at 1000 °C. This work promotes the development of ceramic aerogels for robust thermal insulation under extreme conditions and establishes a set of fundamental considerations in structural design of stretchable aerogels for a wide spectrum of applications.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"26 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202415159","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ceramic aerogels have exhibited many superior characteristics with promising applications. As an attractive material system for thermal insulation under extreme conditions, ceramic aerogels are required to withstand complex thermomechanical stress to retain their super‐insulating properties but, they often suffer from severe fracture damage that can lead to catastrophic failure. Herein, inspired by the tendrils of Parthenocissus, we report a design and synthesis of ultra‐stretchable ceramic aerogels constructed by highly buckled nanofibers. The buckling of nanofibers is formed by asymmetric deformation through two‐component off‐axial electrospinning method. The resulting aerogels feature an ultra‐large stretchability with a tensile strain of up to 150% and high restorability with a tensile strain of up to 80%. They also display a near‐zero Poisson's ratio (4.3 × 10−2) and a near‐zero thermal expansion coefficient (2.6 × 10−7 per °C), resulting in excellent thermomechanical stability. Benefiting from this ultra‐stretchability, the aerogels exhibit a unique tensile‐insensitive thermal insulation performance with thermal conductivities remaining only ≈106.7 mW m−1 K−1 at 1000 °C. This work promotes the development of ceramic aerogels for robust thermal insulation under extreme conditions and establishes a set of fundamental considerations in structural design of stretchable aerogels for a wide spectrum of applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信