Synthesis, Structure, and Electrochemical Performance of Bi-induced Stabilization of MnO2 Cathodes for Use in Highly Acidic Aqueous Electrolytes (pH <2)

IF 5.8 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Ramona Durena, Nikita Griscenko, Liga Orlova, Maris Bertins, Arturs Viksna, Mairis Iesalnieks, Anzelms Zukuls
{"title":"Synthesis, Structure, and Electrochemical Performance of Bi-induced Stabilization of MnO2 Cathodes for Use in Highly Acidic Aqueous Electrolytes (pH <2)","authors":"Ramona Durena, Nikita Griscenko, Liga Orlova, Maris Bertins, Arturs Viksna, Mairis Iesalnieks, Anzelms Zukuls","doi":"10.1016/j.jallcom.2024.177904","DOIUrl":null,"url":null,"abstract":"MnO<sub>2</sub> cathode materials are widely studied in alkaline and neutral aqueous electrolytes. In these mediums, the MnO<sub>2</sub> cathode shows suboptimal performance limited by dissolution and electrochemically inactive compound formation, leading to capacity fading. This study explores the enhancement of MnO<sub>2</sub> cathode performance through Bi<sup>3+</sup> ion doping (0, 1, 2.5, 5, and 10<!-- --> <!-- -->mol%) in a highly acidic electrolyte (pH &lt; 2). By incorporating up to 10<!-- --> <!-- -->mol% Bi ions into the MnO<sub>2</sub> structure, we significantly improved specific capacity and capacity retention stability. Energy-dispersive X-ray spectroscopy (EDX) analysis revealed a uniform dispersion of Bi<sup>3+</sup> ions throughout the MnO<sub>2</sub> cathode after electrochemical cycling, contributing to performance enhancements. X-ray photoelectron spectroscopy (XPS) results indicated that Bi<sup>3+</sup> ion concentration from 1 to 10<!-- --> <!-- -->mol% stabilises Mn<sup>3+</sup> within the MnO<sub>2</sub> lattice. Also, Bi<sup>3+</sup> ion doping promotes the formation of a 2×2 tunnel structured α-MnO<sub>2</sub> phase. Electrochemical impedance spectroscopy results demonstrated a reduction in double-layer and overall bulk capacitance. These findings suggest that Bi<sup>3+</sup> ion doping effectively enhances MnO<sub>2</sub> electrochemical performance and could enhance its use in aqueous metal-ion batteries.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"46 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2024.177904","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

MnO2 cathode materials are widely studied in alkaline and neutral aqueous electrolytes. In these mediums, the MnO2 cathode shows suboptimal performance limited by dissolution and electrochemically inactive compound formation, leading to capacity fading. This study explores the enhancement of MnO2 cathode performance through Bi3+ ion doping (0, 1, 2.5, 5, and 10 mol%) in a highly acidic electrolyte (pH < 2). By incorporating up to 10 mol% Bi ions into the MnO2 structure, we significantly improved specific capacity and capacity retention stability. Energy-dispersive X-ray spectroscopy (EDX) analysis revealed a uniform dispersion of Bi3+ ions throughout the MnO2 cathode after electrochemical cycling, contributing to performance enhancements. X-ray photoelectron spectroscopy (XPS) results indicated that Bi3+ ion concentration from 1 to 10 mol% stabilises Mn3+ within the MnO2 lattice. Also, Bi3+ ion doping promotes the formation of a 2×2 tunnel structured α-MnO2 phase. Electrochemical impedance spectroscopy results demonstrated a reduction in double-layer and overall bulk capacitance. These findings suggest that Bi3+ ion doping effectively enhances MnO2 electrochemical performance and could enhance its use in aqueous metal-ion batteries.
高酸性(pH <2)水中MnO2阴极的合成、结构及电化学性能
二氧化锰正极材料在碱性和中性水溶液中得到了广泛的研究。在这些介质中,二氧化锰阴极受到溶解和电化学活性化合物形成的限制,表现出不理想的性能,导致容量衰减。本研究探讨了在高酸性电解液(pH <;2).通过在MnO2结构中加入高达10 mol%的Bi离子,我们显著提高了MnO2的比容量和容量保持稳定性。能量色散x射线光谱(EDX)分析显示,电化学循环后,Bi3+离子均匀分散在MnO2阴极上,有助于提高性能。x射线光电子能谱(XPS)结果表明,Bi3+离子浓度在1 ~ 10 mol%范围内可以稳定MnO2晶格内的Mn3+。同时,Bi3+离子的掺杂促进了2×2隧道结构α-MnO2相的形成。电化学阻抗谱结果表明双层电容和整体电容减小。这些结果表明,Bi3+离子掺杂可以有效地提高MnO2的电化学性能,并可以增强其在水金属离子电池中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信