Gang Zhou, Guanshuang Chen, Yueying Xin, Jialu Pang, Jialin Wang, Liwei Jiang, Rulin Liu
{"title":"Moisture‐Resistant Nanofiber Membrane Loaded with Copper‐Manganese‐Tin Oxides for Dust and CO Filtration in High Humidity Environments","authors":"Gang Zhou, Guanshuang Chen, Yueying Xin, Jialu Pang, Jialin Wang, Liwei Jiang, Rulin Liu","doi":"10.1002/adfm.202419533","DOIUrl":null,"url":null,"abstract":"This study presents a novel protective membrane, (0.8MnCuSnO<jats:sub>x</jats:sub>‐NaCl)@M, designed for high‐efficiency filtration of dust particles and carbon monoxide (CO) gas offers superior moisture resistance, air permeability, and catalytic functionality in high‐humidity underground settings. The membrane, incorporating tin oxide‐doped CuMnO<jats:sub>x</jats:sub> into polyvinylidene fluoride (PVDF) fibers with sodium chloride (NaCl), achieves 99.99% air filtration efficiency, 323.68 mm s<jats:sup>−1</jats:sup> air permeability, and 92.5% CO catalytic filtration efficiency. Concurrently, the membrane exhibited exceptional hydrophobicity, characterized by a substantial water contact angle of 116.7°, negligible water staining, and a high hydrostatic pressure rating of 2035 Pa, suitable for humid environments. Furthermore, the water absorption profile of the membrane featured a diminished hydroxyl vibrational band, accompanied by a sustained CO conversion efficiency, attesting to its resistance to moisture‐induced deterioration. Computational fluid dynamics (CFD) simulations further clarify the membrane's filtration mechanism, indicating its potential for selective CO and particle filtration. This study provides a reliable idea for the development of moisture‐resistant fiber membranes with high efficiency for filtration of dust and CO. and underscores the synergy of experimental and theoretical approaches.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"196 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202419533","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a novel protective membrane, (0.8MnCuSnOx‐NaCl)@M, designed for high‐efficiency filtration of dust particles and carbon monoxide (CO) gas offers superior moisture resistance, air permeability, and catalytic functionality in high‐humidity underground settings. The membrane, incorporating tin oxide‐doped CuMnOx into polyvinylidene fluoride (PVDF) fibers with sodium chloride (NaCl), achieves 99.99% air filtration efficiency, 323.68 mm s−1 air permeability, and 92.5% CO catalytic filtration efficiency. Concurrently, the membrane exhibited exceptional hydrophobicity, characterized by a substantial water contact angle of 116.7°, negligible water staining, and a high hydrostatic pressure rating of 2035 Pa, suitable for humid environments. Furthermore, the water absorption profile of the membrane featured a diminished hydroxyl vibrational band, accompanied by a sustained CO conversion efficiency, attesting to its resistance to moisture‐induced deterioration. Computational fluid dynamics (CFD) simulations further clarify the membrane's filtration mechanism, indicating its potential for selective CO and particle filtration. This study provides a reliable idea for the development of moisture‐resistant fiber membranes with high efficiency for filtration of dust and CO. and underscores the synergy of experimental and theoretical approaches.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.