Nitrogen addition affects tree trait expression by altering endophytic microbe diversity

IF 3.9 2区 农林科学 Q1 AGRONOMY
Guoyong Yan, Xi Luo, Guancheng Liu, Binbin Huang, Honglin Wang, Xingyu Sun, Gang Fu, Lei Liu, Yajuan Xing, Qinggui Wang
{"title":"Nitrogen addition affects tree trait expression by altering endophytic microbe diversity","authors":"Guoyong Yan, Xi Luo, Guancheng Liu, Binbin Huang, Honglin Wang, Xingyu Sun, Gang Fu, Lei Liu, Yajuan Xing, Qinggui Wang","doi":"10.1007/s11104-024-07103-w","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background</h3><p>Previous studies have demonstrated that plant-associated microbial diversity can confer fitness advantages to the plant host and influence ecosystem functions. The extent to which plant-associated microbial diversity modulates the response of plant fitness to environmental changes through its role in defining trait expression in the host plant remains, however, largely unknown.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>In this study, we aimed to address this gap by sampling plant traits and endophytic microbial communities at seven experimental sites simulating nitrogen deposition, a significant environmental change factor.</p><h3 data-test=\"abstract-sub-heading\">Key results</h3><p>We found a robust correlation between leaf and root traits, and the correlation remains unaffected by nitrogen addition, indicating a coordinated response of plants across both aboveground and belowground organs in the face of environmental changes. Furthermore, our evidence suggests that the adaptation of plant trait expression to nitrogen deposition is specifically modulated by the diversity of plant endophytic fungi and bacteria, rather than endophytic microbial community structure.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>Our results highlight the crucial role of endophytic microbe diversity in modulating plant host adaptation to environmental changes. These findings emphasize the importance of understanding the interactions between plants and their endophytic microbiome to better predict the impacts of environmental changes on ecosystem functions.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"1 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-024-07103-w","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Previous studies have demonstrated that plant-associated microbial diversity can confer fitness advantages to the plant host and influence ecosystem functions. The extent to which plant-associated microbial diversity modulates the response of plant fitness to environmental changes through its role in defining trait expression in the host plant remains, however, largely unknown.

Methods

In this study, we aimed to address this gap by sampling plant traits and endophytic microbial communities at seven experimental sites simulating nitrogen deposition, a significant environmental change factor.

Key results

We found a robust correlation between leaf and root traits, and the correlation remains unaffected by nitrogen addition, indicating a coordinated response of plants across both aboveground and belowground organs in the face of environmental changes. Furthermore, our evidence suggests that the adaptation of plant trait expression to nitrogen deposition is specifically modulated by the diversity of plant endophytic fungi and bacteria, rather than endophytic microbial community structure.

Conclusions

Our results highlight the crucial role of endophytic microbe diversity in modulating plant host adaptation to environmental changes. These findings emphasize the importance of understanding the interactions between plants and their endophytic microbiome to better predict the impacts of environmental changes on ecosystem functions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant and Soil
Plant and Soil 农林科学-农艺学
CiteScore
8.20
自引率
8.20%
发文量
543
审稿时长
2.5 months
期刊介绍: Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信