The effect of antibacterial peptide ε-Polylysine against Pseudomonas aeruginosa biofilm in marine environment

IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Siwei Wu, Quantong Jiang, Dongzhu Lu, Xiaofan Zhai, Jizhou Duan, Baorong Hou
{"title":"The effect of antibacterial peptide ε-Polylysine against Pseudomonas aeruginosa biofilm in marine environment","authors":"Siwei Wu, Quantong Jiang, Dongzhu Lu, Xiaofan Zhai, Jizhou Duan, Baorong Hou","doi":"10.1038/s41529-024-00539-6","DOIUrl":null,"url":null,"abstract":"Natural antibacterial agents with antimicrobial properties have a broad potential to prevent bacterial from forming biofilms adhesion in marine environments. ε-Polylysine (E-PL) consist of homomeric polymer with 25–30 lysine residues with stability, nontoxicity, and biodegradability. ε-Polylysine is a natural cationic antibacterial peptide that can resist microbial forming biofilm adhesion. The current study investigated the action of E-PL against Pseudomonas aeruginosa biofilm isolated from a marine environment. Crystal violet staining was used to examine the effects of E-PL on the formation and destruction of mature biofilms. Scanning Electron and fluorescence microscopy revealed that E-PL treatment damaged the biofilm structure and affected the secretion of extracellular polymers. The CCK8 colorimetric assay showed that E-PL also decreased the metabolic activity and motility of biofilm bacteria. QPCR and transcriptome analysis revealed that E-PL affected biofilm formation and transcriptional regulation by downregulating genes involved in flagellar synthesis (flgE, PA4651, pilW), chemotaxis transduction (PA1251, PA4951, PA4788), biofilm biosynthesis (pelC, pelD, pslK, plsM), transcriptional regulation (PA3973, PA3508, PA0268), phenazine biosynthesis (phzM, phzH, phzS), and electron transfer (PA5401, PA5400, PA3492). This study used multiple methods to identify the mechanism of E-PL action against biofilm, informing the design of novel biofilm treatment methods.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-11"},"PeriodicalIF":6.6000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00539-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Materials Degradation","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41529-024-00539-6","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Natural antibacterial agents with antimicrobial properties have a broad potential to prevent bacterial from forming biofilms adhesion in marine environments. ε-Polylysine (E-PL) consist of homomeric polymer with 25–30 lysine residues with stability, nontoxicity, and biodegradability. ε-Polylysine is a natural cationic antibacterial peptide that can resist microbial forming biofilm adhesion. The current study investigated the action of E-PL against Pseudomonas aeruginosa biofilm isolated from a marine environment. Crystal violet staining was used to examine the effects of E-PL on the formation and destruction of mature biofilms. Scanning Electron and fluorescence microscopy revealed that E-PL treatment damaged the biofilm structure and affected the secretion of extracellular polymers. The CCK8 colorimetric assay showed that E-PL also decreased the metabolic activity and motility of biofilm bacteria. QPCR and transcriptome analysis revealed that E-PL affected biofilm formation and transcriptional regulation by downregulating genes involved in flagellar synthesis (flgE, PA4651, pilW), chemotaxis transduction (PA1251, PA4951, PA4788), biofilm biosynthesis (pelC, pelD, pslK, plsM), transcriptional regulation (PA3973, PA3508, PA0268), phenazine biosynthesis (phzM, phzH, phzS), and electron transfer (PA5401, PA5400, PA3492). This study used multiple methods to identify the mechanism of E-PL action against biofilm, informing the design of novel biofilm treatment methods.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Materials Degradation
npj Materials Degradation MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.80
自引率
7.80%
发文量
86
审稿时长
6 weeks
期刊介绍: npj Materials Degradation considers basic and applied research that explores all aspects of the degradation of metallic and non-metallic materials. The journal broadly defines ‘materials degradation’ as a reduction in the ability of a material to perform its task in-service as a result of environmental exposure. The journal covers a broad range of topics including but not limited to: -Degradation of metals, glasses, minerals, polymers, ceramics, cements and composites in natural and engineered environments, as a result of various stimuli -Computational and experimental studies of degradation mechanisms and kinetics -Characterization of degradation by traditional and emerging techniques -New approaches and technologies for enhancing resistance to degradation -Inspection and monitoring techniques for materials in-service, such as sensing technologies
文献相关原料
公司名称
产品信息
索莱宝
Crystal violet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信