ZnxMnO2/PPy Nanowires Composite as Cathode Material for Aqueous Zinc-Ion Hybrid Supercapacitors

Yujia Xue, Jinghao Huo, Xin Wang, Yuzhen Zhao
{"title":"ZnxMnO2/PPy Nanowires Composite as Cathode Material for Aqueous Zinc-Ion Hybrid Supercapacitors","authors":"Yujia Xue,&nbsp;Jinghao Huo,&nbsp;Xin Wang,&nbsp;Yuzhen Zhao","doi":"10.1002/bte2.20240035","DOIUrl":null,"url":null,"abstract":"<p>Over the past decade, the extensive consumption of finite energy resources has caused severe environmental pollution. Meanwhile, the promotion of renewable energy sources is limited by their intermittent and regional nature. Thus, developing effective energy storage and conversion technologies and devices holds considerable importance. Zinc-ion hybrid supercapacitors (ZISCs) merge the beneficial aspects of both supercapacitors and batteries, rendering them an exceptionally promising energy storage method. As an important cathode material for ZISCs, the tunnel structure MnO<sub>2</sub> has poor conductivity and structural stability. Herein, the Zn<sub>x</sub>MnO<sub>2</sub>/PPy (ZMOP) electrode materials are prepared by hydrothermal method. Doping with Zn<sup>2+</sup> is used to enhance its structural stability, while adding polypyrrole to improve its conductivity. Therefore, the fabricated ZMOP cathode presents superb specific capacity (0.1 A g<sup>−1</sup>, 156.4 mAh g<sup>−1</sup>) and remarkable cycle performance (82.6%, 5000 cycles, 0.2 A g<sup>−1</sup>). Furthermore, the assembled aqueous ZISCs with ZMOP cathode and PPy-derived porous carbon nanotube anode obtain a superb capacity of 109 F g<sup>−1</sup> at 0.1 A g<sup>−1</sup>. Meanwhile, at a power density of 867 W kg<sup>−1</sup>, the corresponding energy density can achieve 20 Wh kg<sup>−1</sup>. And over 5000 cycles at 0.2 A g<sup>−1</sup>, the cycle performance of ZISCs maintains at 86.4%, which exhibits excellent cycle stability. This suggests that ZMOP nanowires are potential cathode materials for superior-performance aqueous ZISCs.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"3 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20240035","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Battery Energy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20240035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Over the past decade, the extensive consumption of finite energy resources has caused severe environmental pollution. Meanwhile, the promotion of renewable energy sources is limited by their intermittent and regional nature. Thus, developing effective energy storage and conversion technologies and devices holds considerable importance. Zinc-ion hybrid supercapacitors (ZISCs) merge the beneficial aspects of both supercapacitors and batteries, rendering them an exceptionally promising energy storage method. As an important cathode material for ZISCs, the tunnel structure MnO2 has poor conductivity and structural stability. Herein, the ZnxMnO2/PPy (ZMOP) electrode materials are prepared by hydrothermal method. Doping with Zn2+ is used to enhance its structural stability, while adding polypyrrole to improve its conductivity. Therefore, the fabricated ZMOP cathode presents superb specific capacity (0.1 A g−1, 156.4 mAh g−1) and remarkable cycle performance (82.6%, 5000 cycles, 0.2 A g−1). Furthermore, the assembled aqueous ZISCs with ZMOP cathode and PPy-derived porous carbon nanotube anode obtain a superb capacity of 109 F g−1 at 0.1 A g−1. Meanwhile, at a power density of 867 W kg−1, the corresponding energy density can achieve 20 Wh kg−1. And over 5000 cycles at 0.2 A g−1, the cycle performance of ZISCs maintains at 86.4%, which exhibits excellent cycle stability. This suggests that ZMOP nanowires are potential cathode materials for superior-performance aqueous ZISCs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信