Effects of Mesoscale Eddies on Southern Ocean Biogeochemistry

IF 8.3 Q1 GEOSCIENCES, MULTIDISCIPLINARY
AGU Advances Pub Date : 2024-11-30 DOI:10.1029/2024AV001355
Lydia Keppler, Yassir A. Eddebbar, Sarah T. Gille, Nicola Guisewhite, Matthew R. Mazloff, Veronica Tamsitt, Ariane Verdy, Lynne D. Talley
{"title":"Effects of Mesoscale Eddies on Southern Ocean Biogeochemistry","authors":"Lydia Keppler,&nbsp;Yassir A. Eddebbar,&nbsp;Sarah T. Gille,&nbsp;Nicola Guisewhite,&nbsp;Matthew R. Mazloff,&nbsp;Veronica Tamsitt,&nbsp;Ariane Verdy,&nbsp;Lynne D. Talley","doi":"10.1029/2024AV001355","DOIUrl":null,"url":null,"abstract":"<p>The Southern Ocean is rich in highly dynamic mesoscale eddies and substantially modulates global biogeochemical cycles. However, the overall surface and subsurface effects of eddies on the Southern Ocean biogeochemistry have not been quantified observationally at a large scale. Here, we co-locate eddies, identified in the Meta3.2DT satellite altimeter-based product, with biogeochemical Argo floats to determine the effects of eddies on the dissolved inorganic carbon (DIC), nitrate, and dissolved oxygen concentrations in the upper 1,500 m of the ice-free Southern Ocean, as well as the eddy effects on the carbon fluxes in this region. DIC and nitrate concentrations are lower in anticyclonic eddies (AEs) and increased in cyclonic eddies (CEs), while dissolved oxygen anomalies switch signs above (CEs: positive, AEs: negative) and below the mixed layer (CEs: negative, AEs: positive). We attribute these anomalies primarily to eddy pumping (isopycnal heave), as well as eddy trapping for oxygen. Maximum anomalies in all tracers occur at greater depths in the subduction zone north of the Antarctic Circumpolar Current (ACC) compared to the upwelling region in the ACC, reflecting differences in background vertical structures. Eddy effects on air–sea <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> exchange have significant seasonal variability, with additional outgassing in CEs in fall (physical process) and additional oceanic uptake in AEs and CEs in spring (biological and physical process). Integrated over the Southern Ocean, AEs contribute <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n <mn>0.03</mn>\n <mo>±</mo>\n </mrow>\n <annotation> ${\\sim} 0.03\\pm $</annotation>\n </semantics></math> 0.01 Pg C <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mtext>yr</mtext>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\text{yr}}^{-1}$</annotation>\n </semantics></math> (7 <span></span><math>\n <semantics>\n <mrow>\n <mo>±</mo>\n <mn>2</mn>\n <mi>%</mi>\n </mrow>\n <annotation> $\\pm 2\\%$</annotation>\n </semantics></math>) to the Southern Ocean carbon uptake, and CEs offset this by <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n <mn>0.01</mn>\n <mo>±</mo>\n </mrow>\n <annotation> ${\\sim} 0.01\\pm $</annotation>\n </semantics></math>0.01 Pg C <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mtext>yr</mtext>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\text{yr}}^{-1}$</annotation>\n </semantics></math> (2 <span></span><math>\n <semantics>\n <mrow>\n <mo>±</mo>\n <mn>2</mn>\n <mi>%</mi>\n </mrow>\n <annotation> $\\pm 2\\%$</annotation>\n </semantics></math>). These findings underscore the importance of considering eddy impacts in observing networks and climate models.</p>","PeriodicalId":100067,"journal":{"name":"AGU Advances","volume":"5 6","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024AV001355","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AGU Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024AV001355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The Southern Ocean is rich in highly dynamic mesoscale eddies and substantially modulates global biogeochemical cycles. However, the overall surface and subsurface effects of eddies on the Southern Ocean biogeochemistry have not been quantified observationally at a large scale. Here, we co-locate eddies, identified in the Meta3.2DT satellite altimeter-based product, with biogeochemical Argo floats to determine the effects of eddies on the dissolved inorganic carbon (DIC), nitrate, and dissolved oxygen concentrations in the upper 1,500 m of the ice-free Southern Ocean, as well as the eddy effects on the carbon fluxes in this region. DIC and nitrate concentrations are lower in anticyclonic eddies (AEs) and increased in cyclonic eddies (CEs), while dissolved oxygen anomalies switch signs above (CEs: positive, AEs: negative) and below the mixed layer (CEs: negative, AEs: positive). We attribute these anomalies primarily to eddy pumping (isopycnal heave), as well as eddy trapping for oxygen. Maximum anomalies in all tracers occur at greater depths in the subduction zone north of the Antarctic Circumpolar Current (ACC) compared to the upwelling region in the ACC, reflecting differences in background vertical structures. Eddy effects on air–sea CO 2 ${\text{CO}}_{2}$ exchange have significant seasonal variability, with additional outgassing in CEs in fall (physical process) and additional oceanic uptake in AEs and CEs in spring (biological and physical process). Integrated over the Southern Ocean, AEs contribute 0.03 ± ${\sim} 0.03\pm $ 0.01 Pg C yr 1 ${\text{yr}}^{-1}$ (7 ± 2 % $\pm 2\%$ ) to the Southern Ocean carbon uptake, and CEs offset this by 0.01 ± ${\sim} 0.01\pm $ 0.01 Pg C yr 1 ${\text{yr}}^{-1}$ (2 ± 2 % $\pm 2\%$ ). These findings underscore the importance of considering eddy impacts in observing networks and climate models.

Abstract Image

中尺度涡旋对南大洋生物地球化学的影响
南大洋具有丰富的高动态中尺度涡旋,对全球生物地球化学循环具有重要的调节作用。然而,涡旋对南大洋生物地球化学的整体表面和次表面效应尚未在大尺度上进行观测量化。在这里,我们将Meta3.2DT卫星高度计产品中识别的涡旋与生物地球化学Argo浮标共同定位,以确定涡旋对无冰南大洋上部1500 m溶解无机碳(DIC)、硝酸盐和溶解氧浓度的影响,以及涡旋对该区域碳通量的影响。DIC和硝酸盐浓度在反气旋涡旋(AEs)中较低,在气旋涡旋(CEs)中升高,而溶解氧异常在混合层上方(CEs为正,AEs为负)和下方(CEs为负,AEs为正)切换标志。我们将这些异常主要归因于涡旋抽运(等压起伏),以及氧气的涡旋捕获。与南极环极流(ACC)的上升流区相比,所有示踪剂的最大异常发生在南极环极流以北俯冲带的更大深度,反映了背景垂直结构的差异。涡旋效应对海气CO 2交换的影响具有显著的季节变化,秋季ce的额外释气(物理过程)和春季es和ce的额外海洋吸收(生物和物理过程)。融合在南大洋之上ae贡献~ 0.03±${\sim} 0.03\pm $ 0.01 Pg C yr−1 ${\text{yr}}^{-1}$ (7±2% $\pm 2\%$)对南大洋碳吸收的影响;而ce则抵消了这一影响:0.01±${\sim} 0.01\pm $ 0.01 Pg C yr−1 ${\text{yr}}^{-1}$ (2)±2% $\pm 2\%$)。这些发现强调了在观测网络和气候模式中考虑涡旋影响的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信