Ionic solid-like conductor-assisted polymer electrolytes for solid-state lithium metal batteries

IF 10.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shuaishuai Yan, Hao Liu, Xiaoxia Chen, Yang Lu, Qingbin Cao, Kai Liu
{"title":"Ionic solid-like conductor-assisted polymer electrolytes for solid-state lithium metal batteries","authors":"Shuaishuai Yan,&nbsp;Hao Liu,&nbsp;Xiaoxia Chen,&nbsp;Yang Lu,&nbsp;Qingbin Cao,&nbsp;Kai Liu","doi":"10.1007/s11426-024-2353-9","DOIUrl":null,"url":null,"abstract":"<div><p>Solid polymer electrolytes (SPEs) have attracted extensive attention by virtue of lightweight and flexible processability for solid-state lithium metal batteries (LMBs) with high energy density and intrinsic safety. However, the SPEs suffer from the trade-off effect between ionic conductivity and mechanical strength. Herein, we report an ionic solid-like conductor with high Li<sup>+</sup> conductivity and good thermal stability as the conductive phase of polymer electrolytes for advanced LMBs. Using poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) as the polymer matrix, the ionic solid-like conductor can be regarded as a solid plasticizer due to its advantages of non-fluidity and non-leakage. It increases the amorphous region and the dissociation degree of lithium salts in SPEs, while minimizing the loss of mechanical properties. As a result, the Li<sup>+</sup> conductivity of SPEs incorporating the ionic solid-like conductor is enhanced by four orders of magnitude compared to the blank PVDF-HFP-based electrolyte. The optimized SPE membranes can be processed as thin as 50 µm with a high Young’s modulus of 16.8 MPa, therefore ensuring stable long-term cycling of solid-state LMBs. The Li/Li symmetric cells stably cycled for more than 750 h without short circuits, and the LiFePO<sub>4</sub>/Li solid-state batteries demonstrate excellent electrochemical performance over 350 cycles with a capacity retention of 82.5%. This work provides a new strategy for designing ionic solid-like conductors as solid plasticizers for high-performance polymer electrolytes.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":772,"journal":{"name":"Science China Chemistry","volume":"67 12","pages":"4116 - 4124"},"PeriodicalIF":10.4000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Chemistry","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s11426-024-2353-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Solid polymer electrolytes (SPEs) have attracted extensive attention by virtue of lightweight and flexible processability for solid-state lithium metal batteries (LMBs) with high energy density and intrinsic safety. However, the SPEs suffer from the trade-off effect between ionic conductivity and mechanical strength. Herein, we report an ionic solid-like conductor with high Li+ conductivity and good thermal stability as the conductive phase of polymer electrolytes for advanced LMBs. Using poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) as the polymer matrix, the ionic solid-like conductor can be regarded as a solid plasticizer due to its advantages of non-fluidity and non-leakage. It increases the amorphous region and the dissociation degree of lithium salts in SPEs, while minimizing the loss of mechanical properties. As a result, the Li+ conductivity of SPEs incorporating the ionic solid-like conductor is enhanced by four orders of magnitude compared to the blank PVDF-HFP-based electrolyte. The optimized SPE membranes can be processed as thin as 50 µm with a high Young’s modulus of 16.8 MPa, therefore ensuring stable long-term cycling of solid-state LMBs. The Li/Li symmetric cells stably cycled for more than 750 h without short circuits, and the LiFePO4/Li solid-state batteries demonstrate excellent electrochemical performance over 350 cycles with a capacity retention of 82.5%. This work provides a new strategy for designing ionic solid-like conductors as solid plasticizers for high-performance polymer electrolytes.

固态锂金属电池用离子固体状导体辅助聚合物电解质
固体聚合物电解质(spe)由于其轻量化和柔性加工特性,在具有高能量密度和本质安全性的固态锂金属电池(lmb)中得到了广泛的关注。然而,spe受到离子电导率和机械强度之间的权衡效应的影响。在此,我们报道了一种具有高Li+导电性和良好热稳定性的离子固体状导体作为先进lmb聚合物电解质的导电相。以聚偏氟乙烯-共六氟丙烯(PVDF-HFP)为聚合物基体,离子固体状导体具有非流动性和不泄漏的优点,可视为固体增塑剂。它增加了SPEs中锂盐的无定形区和解离度,同时使力学性能的损失最小化。结果表明,与空白pvdf - hfp基电解质相比,含有离子固体状导体的spe的Li+电导率提高了4个数量级。优化后的SPE膜可加工至50µm,杨氏模量高达16.8 MPa,从而确保固态lmb的长期稳定循环。锂/锂对称电池稳定循环750 h以上,无短路,LiFePO4/Li固态电池在350次循环中表现出优异的电化学性能,容量保持率为82.5%。这项工作为设计离子固体状导体作为高性能聚合物电解质的固体增塑剂提供了一种新的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science China Chemistry
Science China Chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
14.40
自引率
7.30%
发文量
3787
审稿时长
2.2 months
期刊介绍: Science China Chemistry, co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China and published by Science China Press, publishes high-quality original research in both basic and applied chemistry. Indexed by Science Citation Index, it is a premier academic journal in the field. Categories of articles include: Highlights. Brief summaries and scholarly comments on recent research achievements in any field of chemistry. Perspectives. Concise reports on thelatest chemistry trends of interest to scientists worldwide, including discussions of research breakthroughs and interpretations of important science and funding policies. Reviews. In-depth summaries of representative results and achievements of the past 5–10 years in selected topics based on or closely related to the research expertise of the authors, providing a thorough assessment of the significance, current status, and future research directions of the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信