Divergent chimney and sloping collector design for ground heat source integrated solar chimney power plants

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Erdem Cuce
{"title":"Divergent chimney and sloping collector design for ground heat source integrated solar chimney power plants","authors":"Erdem Cuce","doi":"10.1007/s10973-024-13669-5","DOIUrl":null,"url":null,"abstract":"<div><p>With energy resources being fossil fuel-based, increasing energy production has already reached levels that threaten human health. In this situation, the use of alternative energy sources is seen as the only solution. Solar energy is seen as the most promising source among these alternative energies in terms of its potential. Hence, therefore, this study focuses entirely on one of the solar energy sources. This research aims to assess the impact of the design and underground additional heat source (AHS) on the system performance based on the Manzanares pilot plant (MPP), the first on-site practice of solar chimney power plants. Divergent chimney-SCPP with sloping collector (DISCPP) is analysed in the present work. For DISCPP, the influence of the underground AHS in the range of 50–250 °C on the system outputs is examined. The study demonstrates a remarkable enhancement in power output (PO), with the plant generating 51,545 kW under the reference case conditions. The findings signify that when utilising the DISCPP system, the output soars to 247,672 kW under identical climatic conditions. During sunless hours, a PO of 61,956 kW is achieved with the DISCPP at an underground AHS temperature of 50 °C. Moreover, when the source temperature reaches 250 °C during sunless hours, the DISCPP system continues to deliver a significant output of 450 kW. These outcomes underscore the exceptional performance and reliability of the DISCPP system, even under varying conditions.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"149 23","pages":"14147 - 14161"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10973-024-13669-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

With energy resources being fossil fuel-based, increasing energy production has already reached levels that threaten human health. In this situation, the use of alternative energy sources is seen as the only solution. Solar energy is seen as the most promising source among these alternative energies in terms of its potential. Hence, therefore, this study focuses entirely on one of the solar energy sources. This research aims to assess the impact of the design and underground additional heat source (AHS) on the system performance based on the Manzanares pilot plant (MPP), the first on-site practice of solar chimney power plants. Divergent chimney-SCPP with sloping collector (DISCPP) is analysed in the present work. For DISCPP, the influence of the underground AHS in the range of 50–250 °C on the system outputs is examined. The study demonstrates a remarkable enhancement in power output (PO), with the plant generating 51,545 kW under the reference case conditions. The findings signify that when utilising the DISCPP system, the output soars to 247,672 kW under identical climatic conditions. During sunless hours, a PO of 61,956 kW is achieved with the DISCPP at an underground AHS temperature of 50 °C. Moreover, when the source temperature reaches 250 °C during sunless hours, the DISCPP system continues to deliver a significant output of 450 kW. These outcomes underscore the exceptional performance and reliability of the DISCPP system, even under varying conditions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.50
自引率
9.10%
发文量
577
审稿时长
3.8 months
期刊介绍: Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews. The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信