Pouya Esfanjani, Ali Mahmoudi, Saman Rashidi, Mohammad Sadegh Valipour, Wei-Mon Yan
{"title":"A review on phase change material's applications in solar parabolic dish collectors","authors":"Pouya Esfanjani, Ali Mahmoudi, Saman Rashidi, Mohammad Sadegh Valipour, Wei-Mon Yan","doi":"10.1007/s10973-024-13724-1","DOIUrl":null,"url":null,"abstract":"<div><p>There is an increasing need for sustainable solar thermal energy systems for power production, desalination, cooling and heating, and even cooking in the current world. The most significant challenge for the further development of solar-based technology is the discontinuity and lack of solar irradiance, especially on cloudy days and night hours. Thermal energy storage is the most suggested technology to tackle this challenge partly or mostly. Phase change materials can have a notable role as thermal energy storage in solar thermal energy systems. Besides, parabolic dish collectors are a type of solar collector technology that can be utilized in various thermal systems due to their high concentration ratio and working temperatures. Hence, in this review, the applications of phase change materials in various solar parabolic dish collectors will be investigated in detail. Moreover, the research works are divided into five main categories: power production systems, cooling-heating systems, desalination systems, solar cooker systems, and multigeneration systems. Based on the literature, studies of phase change material's applications in dish collectors are currently limited to theoretical studies in several cases. There is vast research need for further experimental investigations in all the mentioned categories. To this end, some concluding points and suggestions for future studies will be presented to the researchers.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"149 23","pages":"13533 - 13549"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10973-024-13724-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
There is an increasing need for sustainable solar thermal energy systems for power production, desalination, cooling and heating, and even cooking in the current world. The most significant challenge for the further development of solar-based technology is the discontinuity and lack of solar irradiance, especially on cloudy days and night hours. Thermal energy storage is the most suggested technology to tackle this challenge partly or mostly. Phase change materials can have a notable role as thermal energy storage in solar thermal energy systems. Besides, parabolic dish collectors are a type of solar collector technology that can be utilized in various thermal systems due to their high concentration ratio and working temperatures. Hence, in this review, the applications of phase change materials in various solar parabolic dish collectors will be investigated in detail. Moreover, the research works are divided into five main categories: power production systems, cooling-heating systems, desalination systems, solar cooker systems, and multigeneration systems. Based on the literature, studies of phase change material's applications in dish collectors are currently limited to theoretical studies in several cases. There is vast research need for further experimental investigations in all the mentioned categories. To this end, some concluding points and suggestions for future studies will be presented to the researchers.
期刊介绍:
Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews.
The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.