Performance improvement of phase change material (PCM)-based shell-and-tube-type latent heat energy storage system utilizing curved fins

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Tuqa Abdulrazzaq, Nirmalendu Biswas, Thamir Alsharifi, Farhan Lafta Rashid, Abbas Fadhil Khalaf, Abdellatif M. Sadeq, Ali E. Anqi, Hussein Togun, Ahmed Kadhim Hussein
{"title":"Performance improvement of phase change material (PCM)-based shell-and-tube-type latent heat energy storage system utilizing curved fins","authors":"Tuqa Abdulrazzaq,&nbsp;Nirmalendu Biswas,&nbsp;Thamir Alsharifi,&nbsp;Farhan Lafta Rashid,&nbsp;Abbas Fadhil Khalaf,&nbsp;Abdellatif M. Sadeq,&nbsp;Ali E. Anqi,&nbsp;Hussein Togun,&nbsp;Ahmed Kadhim Hussein","doi":"10.1007/s10973-024-13728-x","DOIUrl":null,"url":null,"abstract":"<div><p>This work aims to improve the efficacy of phase change material (PCM)-based shell-and-tube-type latent heat thermal energy storage (LHTES) systems utilizing differently shaped fins. The PCM-based thermal process faces hindrances due to the lesser thermal conducting property of PCM. To address this issue, the present problem is formulated by adopting the concept of conducting fins. The geometry comprises concentric cylinders, in which the inner cylinder carries the heat transfer fluid (HTF), whereas the outer cylinder contains PCM. Four number fins of different shapes are attached outside the HTF carrying cylinder. The enthalpy–porosity approach is used for modeling the phase change and heat transfer. The investigation is conducted numerically utilizing the finite volume-based numerical technique for the range of control variables such as the shape of the fins (straight, curved, and wavy fins) and various temperatures of the HTF. Furthermore, all the results are assessed with the results of no-fin case. The results show that the melting time drops markedly by 122.2% using a curved fin. This paper shows the capability of geometry modification in enhancing the heat energy storage rate of thermal energy storage systems. The PCM-based latent heat thermal energy storage (LHTES) unit is very effective for sustainable energy solutions through storing and releasing of renewable energy following the supply and demand cycle. Therefore, the outcome of the present study will enrich the knowledge on the design of efficient and compact thermal energy storage systems.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"149 23","pages":"14241 - 14255"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10973-024-13728-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This work aims to improve the efficacy of phase change material (PCM)-based shell-and-tube-type latent heat thermal energy storage (LHTES) systems utilizing differently shaped fins. The PCM-based thermal process faces hindrances due to the lesser thermal conducting property of PCM. To address this issue, the present problem is formulated by adopting the concept of conducting fins. The geometry comprises concentric cylinders, in which the inner cylinder carries the heat transfer fluid (HTF), whereas the outer cylinder contains PCM. Four number fins of different shapes are attached outside the HTF carrying cylinder. The enthalpy–porosity approach is used for modeling the phase change and heat transfer. The investigation is conducted numerically utilizing the finite volume-based numerical technique for the range of control variables such as the shape of the fins (straight, curved, and wavy fins) and various temperatures of the HTF. Furthermore, all the results are assessed with the results of no-fin case. The results show that the melting time drops markedly by 122.2% using a curved fin. This paper shows the capability of geometry modification in enhancing the heat energy storage rate of thermal energy storage systems. The PCM-based latent heat thermal energy storage (LHTES) unit is very effective for sustainable energy solutions through storing and releasing of renewable energy following the supply and demand cycle. Therefore, the outcome of the present study will enrich the knowledge on the design of efficient and compact thermal energy storage systems.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.50
自引率
9.10%
发文量
577
审稿时长
3.8 months
期刊介绍: Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews. The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信