Quantum transport properties of a double-barrier quantum well structure based on V-cut edge-patterned armchair graphene nanoribbon

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Bikramjit Basumatary, Agile Mathew
{"title":"Quantum transport properties of a double-barrier quantum well structure based on V-cut edge-patterned armchair graphene nanoribbon","authors":"Bikramjit Basumatary,&nbsp;Agile Mathew","doi":"10.1007/s10825-024-02264-4","DOIUrl":null,"url":null,"abstract":"<div><p>A double-barrier quantum well is created using a larger band gap V-cut modified armchair graphene nanoribbon (AGNR) for the barrier region and a pristine AGNR with a smaller bandgap for the channel region. The numerical non-equilibrium Green’s function (NEGF) method, based on the pi-orbital tight-binding model, is employed to study the quantum transport properties of the device. The effects of various dimensional parameters, such as contact width, channel length, and distance between V-cuts in the barrier region, are investigated. The plot of the local density of states (LDOS) shows the formation of a single quantized quasi-energy state in the channel region, corresponding to a peak in transmission. The V–I characteristics of the device exhibit negative differential resistance (NDR) regions for a certain range of bias values. This device’s resonant tunneling performance parameters are compared with those of a similar, previously reported structure.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"24 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-024-02264-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A double-barrier quantum well is created using a larger band gap V-cut modified armchair graphene nanoribbon (AGNR) for the barrier region and a pristine AGNR with a smaller bandgap for the channel region. The numerical non-equilibrium Green’s function (NEGF) method, based on the pi-orbital tight-binding model, is employed to study the quantum transport properties of the device. The effects of various dimensional parameters, such as contact width, channel length, and distance between V-cuts in the barrier region, are investigated. The plot of the local density of states (LDOS) shows the formation of a single quantized quasi-energy state in the channel region, corresponding to a peak in transmission. The V–I characteristics of the device exhibit negative differential resistance (NDR) regions for a certain range of bias values. This device’s resonant tunneling performance parameters are compared with those of a similar, previously reported structure.

Abstract Image

基于v形边型扶手椅石墨烯纳米带的双势垒量子阱结构的量子输运性质
双势垒量子阱使用较大带隙的V-cut修饰扶手型石墨烯纳米带(AGNR)作为势垒区,通道区域使用较小带隙的原始AGNR。采用基于pi轨道紧密结合模型的数值非平衡格林函数(NEGF)方法研究了该器件的量子输运性质。研究了各种尺寸参数,如接触宽度、通道长度和势垒区v形切口之间的距离等。局域态密度(LDOS)图显示在通道区域形成了一个单一的量子化准能态,对应于传输中的峰值。该器件的V-I特性在一定偏置范围内呈现负差分电阻(NDR)区域。将该装置的谐振隧道性能参数与先前报道的类似结构进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Electronics
Journal of Computational Electronics ENGINEERING, ELECTRICAL & ELECTRONIC-PHYSICS, APPLIED
CiteScore
4.50
自引率
4.80%
发文量
142
审稿时长
>12 weeks
期刊介绍: he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered. In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信