Synergic effects of time dependence and thermodynamic driving on metastable phase separation of liquid Fe50Cu50 alloy

IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
D. L. Geng, S. Y. Wang, N. S. Hou, B. Wei
{"title":"Synergic effects of time dependence and thermodynamic driving on metastable phase separation of liquid Fe50Cu50 alloy","authors":"D. L. Geng,&nbsp;S. Y. Wang,&nbsp;N. S. Hou,&nbsp;B. Wei","doi":"10.1007/s00339-024-08118-x","DOIUrl":null,"url":null,"abstract":"<div><p>The synergic effects of time dependence and thermodynamic driving on the metastable phase separation of liquid Fe<sub>50</sub>Cu<sub>50</sub> hypoperitectic alloy were explored with three kinds of experimental methods including differential scanning calorimetry (DSC), laser heating, and drop tube. The calculated incubation time indicated that the secondary Cu-rich liquid phase kept the priority to nucleate when alloy undercooling exceeded 28 K. The cooling rates in three kinds of experiments covered six orders of magnitude from 3×10<sup>–1</sup> to 6×10<sup>5</sup> K/s, and resulted in wide range of phase separation time and globule migration velocity. The extent of phase separation was determined by the globule migration distance in the phase separation time. Under 0.33 and 0.83 K/s slow cooling rates in DSC experiments, liquid phase separation was dominated by Stokes motion, and extended phase separation time led to more complete macrosegregation. At a higher cooling rate of 1500 K/s in laser heating experiment, the enhanced Marangoni migration resulted in distinctive macrosegregation in short phase separation time. Once liquid phase separation occurred under microgravity state in drop tube experiment, the phase separation time was the crucial factor dominating microstructure evolution. Core–shell macrosegregation formed in medium size alloy droplets with sufficient phase separation time, while dispersed structure appeared in small droplets with reduced phase separation time. Peritectic structure arose again due to the extremely short phase separation time in tiny alloy droplets.</p></div>","PeriodicalId":473,"journal":{"name":"Applied Physics A","volume":"130 12","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00339-024-08118-x","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The synergic effects of time dependence and thermodynamic driving on the metastable phase separation of liquid Fe50Cu50 hypoperitectic alloy were explored with three kinds of experimental methods including differential scanning calorimetry (DSC), laser heating, and drop tube. The calculated incubation time indicated that the secondary Cu-rich liquid phase kept the priority to nucleate when alloy undercooling exceeded 28 K. The cooling rates in three kinds of experiments covered six orders of magnitude from 3×10–1 to 6×105 K/s, and resulted in wide range of phase separation time and globule migration velocity. The extent of phase separation was determined by the globule migration distance in the phase separation time. Under 0.33 and 0.83 K/s slow cooling rates in DSC experiments, liquid phase separation was dominated by Stokes motion, and extended phase separation time led to more complete macrosegregation. At a higher cooling rate of 1500 K/s in laser heating experiment, the enhanced Marangoni migration resulted in distinctive macrosegregation in short phase separation time. Once liquid phase separation occurred under microgravity state in drop tube experiment, the phase separation time was the crucial factor dominating microstructure evolution. Core–shell macrosegregation formed in medium size alloy droplets with sufficient phase separation time, while dispersed structure appeared in small droplets with reduced phase separation time. Peritectic structure arose again due to the extremely short phase separation time in tiny alloy droplets.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Physics A
Applied Physics A 工程技术-材料科学:综合
CiteScore
4.80
自引率
7.40%
发文量
964
审稿时长
38 days
期刊介绍: Applied Physics A publishes experimental and theoretical investigations in applied physics as regular articles, rapid communications, and invited papers. The distinguished 30-member Board of Editors reflects the interdisciplinary approach of the journal and ensures the highest quality of peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信