{"title":"Evaluating flow cytometric metrics for enhancing microbial monitoring in drinking water treatment processes","authors":"L. Claveau , N. Hudson , P. Jeffrey , F. Hassard","doi":"10.1016/j.jwpe.2024.106679","DOIUrl":null,"url":null,"abstract":"<div><div>Flow cytometry (FCM) offers a rapid method for bacterial detection in drinking water but faces challenges in terms of data analysis, particularly gating subjectivity. This study evaluates three metrics derived from the Intact Cell Count (ICC): High/Low Nucleic Acid (HNA/LNA) ratios, Bray–Curtis Dissimilarity Index (BCDI), and FCM fingerprints—to enhance microbial monitoring approaches across different water treatment and distribution stages. ICC provided a direct assessment of microbial load in high cell count scenarios, while HNA/LNA ratios were valuable during low microbial levels. BCDI effectively tracked microbial population changes throughout treatment processes. A lead–lag analysis revealed that ICC changes often precede or coincide with BCDI changes and lead changes in HNA/LNA ratios. FCM fingerprinting visualized spatial and temporal variations in microbial communities. Combining these FCM metrics improved microbial water quality assessment and supports approaches to optimise water treatment strategies from a microbial perspective.</div></div>","PeriodicalId":17528,"journal":{"name":"Journal of water process engineering","volume":"69 ","pages":"Article 106679"},"PeriodicalIF":6.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of water process engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214714424019111","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Flow cytometry (FCM) offers a rapid method for bacterial detection in drinking water but faces challenges in terms of data analysis, particularly gating subjectivity. This study evaluates three metrics derived from the Intact Cell Count (ICC): High/Low Nucleic Acid (HNA/LNA) ratios, Bray–Curtis Dissimilarity Index (BCDI), and FCM fingerprints—to enhance microbial monitoring approaches across different water treatment and distribution stages. ICC provided a direct assessment of microbial load in high cell count scenarios, while HNA/LNA ratios were valuable during low microbial levels. BCDI effectively tracked microbial population changes throughout treatment processes. A lead–lag analysis revealed that ICC changes often precede or coincide with BCDI changes and lead changes in HNA/LNA ratios. FCM fingerprinting visualized spatial and temporal variations in microbial communities. Combining these FCM metrics improved microbial water quality assessment and supports approaches to optimise water treatment strategies from a microbial perspective.
期刊介绍:
The Journal of Water Process Engineering aims to publish refereed, high-quality research papers with significant novelty and impact in all areas of the engineering of water and wastewater processing . Papers on advanced and novel treatment processes and technologies are particularly welcome. The Journal considers papers in areas such as nanotechnology and biotechnology applications in water, novel oxidation and separation processes, membrane processes (except those for desalination) , catalytic processes for the removal of water contaminants, sustainable processes, water reuse and recycling, water use and wastewater minimization, integrated/hybrid technology, process modeling of water treatment and novel treatment processes. Submissions on the subject of adsorbents, including standard measurements of adsorption kinetics and equilibrium will only be considered if there is a genuine case for novelty and contribution, for example highly novel, sustainable adsorbents and their use: papers on activated carbon-type materials derived from natural matter, or surfactant-modified clays and related minerals, would not fulfil this criterion. The Journal particularly welcomes contributions involving environmentally, economically and socially sustainable technology for water treatment, including those which are energy-efficient, with minimal or no chemical consumption, and capable of water recycling and reuse that minimizes the direct disposal of wastewater to the aquatic environment. Papers that describe novel ideas for solving issues related to water quality and availability are also welcome, as are those that show the transfer of techniques from other disciplines. The Journal will consider papers dealing with processes for various water matrices including drinking water (except desalination), domestic, urban and industrial wastewaters, in addition to their residues. It is expected that the journal will be of particular relevance to chemical and process engineers working in the field. The Journal welcomes Full Text papers, Short Communications, State-of-the-Art Reviews and Letters to Editors and Case Studies