Tian-Yi Yang , Ting-Ting Su , Hai-Long Wang , Kun Li , Wen-Feng Ren , Run-Cang Sun
{"title":"“Tennis racket” hydrogel electrolytes to synchronously regulate cathode and anode of zinc-iodine batteries","authors":"Tian-Yi Yang , Ting-Ting Su , Hai-Long Wang , Kun Li , Wen-Feng Ren , Run-Cang Sun","doi":"10.1016/j.jechem.2024.11.004","DOIUrl":null,"url":null,"abstract":"<div><div>Aqueous zinc-iodine (Zn-I<sub>2</sub>) batteries show great potential as energy storage candidates due to their high-safety and low-cost, but confronts hydrogen evolution reaction (HER) and dendrite growth at anode side and polyiodide shuttling at cathode side. Herein, “tennis racket” (TR) hydrogel electrolytes were prepared by the co-polymerization and co-blending of polyacrylamide (PAM), sodium lignosulfonate (SL), and sodium alginate (SA) to synchronously regulate cathode and anode of Zn-I<sub>2</sub> batteries. “Gridline structure” of TR can induce the uniform transportation of Zn<sup>2+</sup> ions through the coordination effect to hinder HER and dendrite growth at anode side, as well as hit I<sub>3</sub><sup>−</sup> ions as “tennis” via the strong repulsion force to avoid shuttle effect at cathode side. The synergistic effect of TR electrolyte endows Zn-Zn symmetric battery with high cycling stability over 4500 h and Zn-I<sub>2</sub> cell with the stably cycling life of 15000 cycles at 5 A g<sup>−1</sup>, outperforming the reported works. The practicability of TR electrolyte is verified by flexible Zn-I<sub>2</sub> pouch battery. This work opens a route to synchronously regulate cathode and anode to enhance the electrochemical performance of Zn-I<sub>2</sub> batteries.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"102 ","pages":"Pages 454-462"},"PeriodicalIF":13.1000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495624007630","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
Abstract
Aqueous zinc-iodine (Zn-I2) batteries show great potential as energy storage candidates due to their high-safety and low-cost, but confronts hydrogen evolution reaction (HER) and dendrite growth at anode side and polyiodide shuttling at cathode side. Herein, “tennis racket” (TR) hydrogel electrolytes were prepared by the co-polymerization and co-blending of polyacrylamide (PAM), sodium lignosulfonate (SL), and sodium alginate (SA) to synchronously regulate cathode and anode of Zn-I2 batteries. “Gridline structure” of TR can induce the uniform transportation of Zn2+ ions through the coordination effect to hinder HER and dendrite growth at anode side, as well as hit I3− ions as “tennis” via the strong repulsion force to avoid shuttle effect at cathode side. The synergistic effect of TR electrolyte endows Zn-Zn symmetric battery with high cycling stability over 4500 h and Zn-I2 cell with the stably cycling life of 15000 cycles at 5 A g−1, outperforming the reported works. The practicability of TR electrolyte is verified by flexible Zn-I2 pouch battery. This work opens a route to synchronously regulate cathode and anode to enhance the electrochemical performance of Zn-I2 batteries.
期刊介绍:
The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies.
This journal focuses on original research papers covering various topics within energy chemistry worldwide, including:
Optimized utilization of fossil energy
Hydrogen energy
Conversion and storage of electrochemical energy
Capture, storage, and chemical conversion of carbon dioxide
Materials and nanotechnologies for energy conversion and storage
Chemistry in biomass conversion
Chemistry in the utilization of solar energy